首页> 外文期刊>ACM transactions on knowledge discovery from data >Leveraging Kernel-Incorporated Matrix Factorization for App Recommendation
【24h】

Leveraging Kernel-Incorporated Matrix Factorization for App Recommendation

机译:利用核心纳入的矩阵分解,用于应用推荐

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing number of smartphone applications (apps) available on different app markets poses a challenge for personalized app recommendation. Conventional collaborative filtering-based recommendation methods suffer from sparse and binary user-app implicit feedback, which results in poor performance in discriminating user-app preferences. In this article, we first propose two kernel incorporated probabilistic matrix factorization models, which introduce app-categorical information to constrain the user and app latent features to be similar to their neighbors in the latent space. The two models are solved by Stochastic Gradient Descent with a user-oriented negative sampling scheme. To further improve the recommendation performance, we construct pseudo user-app ratings based on user-app usage information, and propose a novel kernelized non-negative matrix factorization by incorporating non-negative constraints on latent factors to predict user-app preferences. This model also leverages user-user and app-app similarities with regard to app-categorical information to mine the latent geometric structure in the pseudo-rating space. Adopting the Karush-Kuhn-Tucker conditions, a Multiplicative Updating Rules based optimization is proposed for model learning, and the convergence is proved by introducing an auxiliary function. The experimental results on a real user-app installation usage dataset show the comparable performance of our models with the state-of-the-art baselines in terms of two ranking-oriented evaluation metrics.
机译:越来越多的App Markets可用的智能手机应用程序(应用程序)对个性化应用程序推荐的挑战构成了挑战。常规的协作滤波的推荐方法遭受稀疏和二进制用户应用隐含反馈,这导致鉴别用户应用程序首选项的性能不佳。在本文中,我们首先提出了两个内核公司的概率矩阵分子化模型,它引入了应用程序分类信息,以限制用户和应用程序潜在特征,以与潜在空间中的邻居类似。两种型号通过随机梯度下降来解决,具有面向用户的负面采样方案。为了进一步提高推荐性能,我们根据用户应用程序使用信息构建伪用户应用额定值,并通过在潜在的因子上结合对潜在因子来预测用户应用程序偏好来提出新的内核化非负矩阵分解。该模型还利用了用户用户和App-App的相似性,用于在应用程序分类信息中挖掘伪级空间中的潜在几何结构。采用Karush-Kuhn-Tucker条件,提出了一种基于乘法更新的规则的优化,用于模型学习,并通过引入辅助功能来证明收敛。实验结果对真实的用户 - 应用程序安装使用数据集显示了我们的模型的可比性性能,以便在最先进的基本线上的两个取向的评估指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号