首页> 外文期刊>Knowledge-Based Systems >Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems
【24h】

Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems

机译:推荐系统基于属性映射和自动编码器神经网络的矩阵分解初始化

获取原文
获取原文并翻译 | 示例

摘要

The recommendation algorithm is attracting increasing attention in analyzing big data. Matrix factorization (MF) is one of the recommendation methods and Singular Value Decomposition (SVD) is the most popular matrix factorization method. However, the existing SVD methods usually initialize user and item feature randomly, not fully utilize the information of the data, so require plenty of experiments to determine feature matrix dimension, with low convergence efficiency and low accuracy. This paper presents a hybrid initialization method based on attribute mapping and autoencoder neural network to solve these problems, which consists of three parts: (1) use the number of item attribute types to determine feature matrix dimension in order to avoid multiple experiments to select the optimal dimension value; (2) use items' attributes to initialize the item feature matrix in SVD++, and use an attribute mapping mechanism to get an item feature vector by fitting the rating matrix to accelerate the convergence; (3) adopt the autoencoder neural network to reduce feature dimension and obtain item latent features for initializing SVD++. The experimental results show that our methods achieve better performance than SVD++ random initialization and also be adopted to other matrix factorization methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:推荐算法在分析大数据方面引起了越来越多的关注。矩阵分解(MF)是推荐方法之一,奇异值分解(SVD)是最流行的矩阵分解方法。然而,现有的SVD方法通常随机地初始化用户和商品特征,没有充分利用数据信息,因此需要大量的实验来确定特征矩阵的维数,收敛效率低,准确性低。本文提出了一种基于属性映射和自动编码器神经网络的混合初始化方法来解决这些问题,该方法包括三个部分:(1)使用项属性类型的数量来确定特征矩阵维,以避免多次实验选择最佳尺寸值; (2)利用商品属性在SVD ++中初始化商品特征矩阵,并利用属性映射机制通过拟合等级矩阵来加速商品融合,从而获得商品特征向量。 (3)采用自动编码器神经网络来减少特征尺寸并获得用于初始化SVD ++的项目潜在特征。实验结果表明,我们的方法比SVD ++随机初始化具有更好的性能,并被其他矩阵分解方法采用。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|132-139|共8页
  • 作者单位

    Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China;

    Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China;

    Univ Oulu, Fac Informat Technol & Elect Engn, Oulu, Finland|Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada;

    Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China;

    Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China;

    Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China;

    Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommendation systems; Attribute initialization; SVD plus; Autoencoder neural network;

    机译:推荐系统;属性初始化;SVD plus;自动编码器神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号