首页> 外文期刊>Parallel Computing >Parallelization of 2D MPDATA EULAG algorithm on hybrid architectures with GPU accelerators
【24h】

Parallelization of 2D MPDATA EULAG algorithm on hybrid architectures with GPU accelerators

机译:使用GPU加速器的混合架构上的2D MPDATA EULAG算法并行化

获取原文
获取原文并翻译 | 示例

摘要

EULAG (Eulerian/semi-Lagrangian fluid solver) is an established computational model developed for simulating thermo-fluid flows across a wide range of scales and physical scenarios. The dynamic core of EULAG includes the multidimensional positive definite advection transport algorithm (MPDATA) and elliptic solver. In this work we investigate aspects of an optimal parallel version of the 2D MPDATA algorithm on modern hybrid architectures with GPU accelerators, where computations are distributed across both GPU and CPU components. Using the hybrid OpenMP-OpenCL model of parallel programming opens the way to harness the power of CPU-GPU platforms in a portable way. In order to better utilize features of such computing platforms, comprehensive adaptations of MPDATA computations to hybrid architectures are proposed. These adaptations are based on efficient strategies for memory and computing resource management, which allow us to ease memory and communication bounds, and better exploit the theoretical floating point efficiency of CPU-GPU platforms. The main contributions of the paper are: 1. method for the decomposition of the 2D MPDATA algorithm as a tool to adapt MPDATA computations to hybrid architectures with GPU accelerators by minimizing communication and synchronization between CPU and GPU components at the cost of additional computations; 2. method for the adaptation of 2D MPDATA computations to multicore CPU platforms, based on space and temporal blocking techniques; 3. method for the adaptation of the 2D MPDATA algorithm to GPU architectures, based on a hierarchical decomposition strategy across data and computation domains, with support provided by the developed GPU task scheduler allowing for the flexible management of available resources; 4. approach to the parametric optimization of 2D MPDATA computations on CPUs using the autotuning technique, which allows us to provide a portable implementation methodology across a variety of GPUs. Hybrid platforms tested in this study contain different numbers of CPUs and GPUs -from solutions consisting of a single CPU and a single GPU to the most elaborate configuration containing two CPUs and two GPUs. Processors of different vendors are employed in these systems - both Intel and AMD CPUs, as well as GPUs from NVIDIA and AMD. For all the grid sizes and for all the tested platforms, the hybrid version with computations spread across CPU and GPU components allows us to achieve the highest performance. In particular, for the largest MPDATA grids used in our experiments, the speedups of the hybrid versions over GPU and CPU versions vary from 1.30 to 1.69, and from 1.95 to 2.25, respectively.
机译:EULAG(欧拉/半拉格朗日流体求解器)是一种建立的计算模型,旨在模拟各种规模和物理场景下的热流体流动。 EULAG的动态核心包括多维正定对流传输算法(MPDATA)和椭圆求解器。在这项工作中,我们研究了具有GPU加速器的现代混合架构上2D MPDATA算法的最佳并行版本的各个方面,其中计算跨GPU和CPU组件分布。使用并行编程的混合OpenMP-OpenCL模型为以便携式方式利用CPU-GPU平台的功能开辟了道路。为了更好地利用这样的计算平台的特征,提出了MPDATA计算对混合架构的全面适应。这些改编基于内存和计算资源管理的有效策略,这些策略使我们能够缓解内存和通信范围,并更好地利用CPU-GPU平台的理论浮点效率。本文的主要贡献是:1.分解2D MPDATA算法的方法,该工具是一种通过使CPU和GPU组件之间的通信和同步最小化(以额外的计算为代价)来使MPDATA计算与具有GPU加速器的混合体系结构相适应的工具; 2.基于空间和时间阻塞技术将2D MPDATA计算适配到多核CPU平台的方法; 3.基于跨数据和计算域的分层分解策略,使2D MPDATA算法适应GPU架构的方法,并由开发的GPU任务调度器提供支持,以允许灵活地管理可用资源; 4.使用自动调整技术对CPU上的2D MPDATA计算进行参数优化的方法,这使我们能够为各种GPU提供一种可移植的实现方法。在这项研究中测试的混合平台包含不同数量的CPU和GPU-从由单个CPU和单个GPU组成的解决方案到包含两个CPU和两个GPU的最精细的配置。这些系统中使用了不同供应商的处理器-英特尔和AMD CPU,以及NVIDIA和AMD的GPU。对于所有网格大小和所有经过测试的平台,其混合版本的计算分散在CPU和GPU组件中,使我们能够实现最高性能。特别是,对于我们实验中使用的最大MPDATA网格,混合版本在GPU和CPU版本上的加速分别从1.30至1.69和1.95至2.25不等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号