首页> 外文期刊>Parallel Computing >Implementing QR factorization updating algorithms on GPUs
【24h】

Implementing QR factorization updating algorithms on GPUs

机译:在GPU上实现QR分解更新算法

获取原文
获取原文并翻译 | 示例

摘要

Linear least squares problems are commonly solved by QR factorization. When multiple solutions need to be computed with only minor changes in the underlying data, knowledge of the difference between the old data set and the new can be used to update an existing factorization at reduced computational cost. We investigate the viability of implementing QR updating algorithms on GPUs and demonstrate that CPU-based updating for removing columns achieves speed-ups of up to 13.5x compared with full GPU QR factorization. We characterize the conditions under which other types of updates also achieve speed-ups. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
机译:线性最小二乘问题通常通过QR因式分解解决。当仅需对基础数据进行少量更改即可计算多个解决方案时,可以使用对旧数据集和新数据集之间差异的了解来以降低的计算成本来更新现有的因式分解。我们调查了在GPU上实施QR更新算法的可行性,并证明了基于CPU的删除列更新与完全GPU QR分解相比可实现高达13.5倍的加速。我们描述了其他类型的更新也可以实现加速的条件。 (C)2014作者。由Elsevier B.V.发布。这是CC BY许可下的开放获取文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号