首页> 外文期刊>Parallel Computing >PSe1Inv - A distributed memory parallel algorithm for selected inversion: The non-symmetric case
【24h】

PSe1Inv - A distributed memory parallel algorithm for selected inversion: The non-symmetric case

机译:PSe1Inv-用于选择反转的分布式内存并行算法:非对称情况

获取原文
获取原文并翻译 | 示例

摘要

This paper generalizes the parallel selected inversion algorithm called PSeIInv to sparse non-symmetric matrices. We assume a general sparse matrix A has been decomposed as PAQ = LU on a distributed memory parallel machine, where L, U are lower and upper triangular matrices, and P, Q are permutation matrices, respectively. The PSeIInv method computes selected elements of A(-1). The selection is confined by the sparsity pattern of the matrix AT. Our algorithm does not assume any symmetry properties of A, and our parallel implementation is memory efficient, in the sense that the computed elements of A-T over-writes the sparse matrix L U in situ. PSeIInv involves a large number of collective data communication activities within different processor groups of various sizes. In order to minimize idle time and improve load balancing, tree-based asynchronous communication is used to coordinate all such collective communication. Numerical results demonstrate that PSeIInv can scale efficiently to 6,400 cores for a variety of matrices. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文推广了称为PSeIInv的并行选择反演算法,以稀疏非对称矩阵。我们假设在分布式存储并行机上将一般稀疏矩阵A分解为PAQ = LU,其中L,U是上下三角矩阵,P,Q分别是置换矩阵。 PSeIInv方法计算A(-1)的选定元素。该选择由矩阵AT的稀疏模式限制。我们的算法不假设A的任何对称性,并且在A-T的计算元素会原位覆盖稀疏矩阵L的意义上,我们的并行实现是内存有效的。 PSeIInv在各种大小的不同处理器组中涉及大量的集体数据通信活动。为了最小化空闲时间并改善负载平衡,基于树的异步通信用于协调所有此类集体通信。数值结果表明,PSeIInv可以有效地扩展到各种矩阵的6,400个内核。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号