首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Hierarchical Multi-Agent Optimization for Resource Allocation in Cloud Computing
【24h】

Hierarchical Multi-Agent Optimization for Resource Allocation in Cloud Computing

机译:云计算中资源分配的分层多功能优化

获取原文
获取原文并翻译 | 示例

摘要

In cloud computing, an important concern is to allocate the available resources of service nodes to the requested tasks on demand and to make the objective function optimum, i.e., maximizing resource utilization, payoffs, and available bandwidth. This article proposes a hierarchical multi-agent optimization (HMAO) algorithm in order to maximize the resource utilization and make the bandwidth cost minimum for cloud computing. The proposed HMAO algorithm is a combination of the genetic algorithm (GA) and the multi-agent optimization (MAO) algorithm. With maximizing the resource utilization, an improved GA is implemented to find a set of service nodes that are used to deploy the requested tasks. A decentralized-based MAO algorithm is presented to minimize the bandwidth cost. We study the effect of key parameters of the HMAO algorithm by the Taguchi method and evaluate the performance results. The results demonstrate that the HMAO algorithm is more effective than two baseline algorithms of genetic algorithm (GA) and fast elitist non-dominated sorting genetic algorithm (NSGA-II) in solving the large-scale optimization problem of resource allocation. Furthermore, we provide the performance comparison of the HMAO algorithm with two heuristic Greedy and Viterbi algorithms in on-line resource allocation.
机译:在云计算中,一个重要的问题是根据需要将服务节点的可用资源分配给所请求的任务,并使目标函数最佳,即最大化资源利用率,收益和可用带宽。本文提出了分层多代理优化(HMAO)算法,以最大限度地提高资源利用率,并使云计算的带宽成本最小。所提出的HMAO算法是遗传算法(GA)和多代理优化(MAO)算法的组合。通过最大化资源利用率,实现了一种改进的GA以查找用于部署所请求任务的一组服务节点。提出了一种基于分散的MAO算法,以最小化带宽成本。我们通过Taguchi方法研究了HMAO算法关键参数的影响,评价性能结果。结果表明,HMAO算法比遗传算法(GA)和快速精油非主导分类遗传算法(NSGA-II)更有效地效力,在解决资源分配的大规模优化问题。此外,我们提供了在线资源分配中具有两个启发式贪婪和维特比算法的HMAO算法的性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号