首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems
【24h】

Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems

机译:在移动系统中具有全局不平衡数据的自平衡联合学习

获取原文
获取原文并翻译 | 示例

摘要

Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural network while their private training data remains in local devices. This distributed approach is promising in the mobile systems where have a large corpus of decentralized data and require high privacy. However, unlike the common datasets, the data distribution of the mobile systems is imbalanced which will increase the bias of model. In this article, we demonstrate that the imbalanced distributed training data will cause an accuracy degradation of FL applications. To counter this problem, we build a self-balancing FL framework named Astraea, which alleviates the imbalances by 1) Z-score-based data augmentation, and 2) Mediator-based multi-client rescheduling. The proposed framework relieves global imbalance by adaptive data augmentation and downsampling, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg, the vanilla FL algorithm, Astraea shows +4.39 and +6.51 percent improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea is reduced by 75 percent compared to FedAvg.
机译:联合学习(FL)是一种分布式的深度学习方法,使多个参与者(如移动设备和物联网设备)能够在本地设备中保留在本地设备中的同时贡献神经网络。这种分布式方法在移动系统中具有很大的分散数据语料库,并且需要高隐私。然而,与公共数据集不同,移动系统的数据分布是不平衡的,这将增加模型的偏差。在本文中,我们证明了不平衡的分布式训练数据将导致FL应用的准确性降低。为了解决这个问题,我们建立一个名为Astraea的自平衡框架,减轻了基于Z-Score的数据增强和2)基于介质的多客户重新安排的不平衡。所提出的框架通过自适应数据增强和下采样来缓解全球不平衡,并且为了平均本地不平衡,它创建了基于其数据分布的Kullback-Leibler发散(KLD)重新安排客户端的培训。与FEDAVG,Vanilla FL算法,Astraea相比,Astraea分别显示了+4.39和+6.51百分比,分别提高了不平衡的Emnist和Imbalance Cinic-10数据集的前1个精度。同时,与FEDAVG相比,Astraea的通信流量减少了75%。

著录项

  • 来源
  • 作者单位

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China|Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China|Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China|Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China|Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China|Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China;

    Chongqing Univ Sch Microelect & Commun Engn Chongqing 400044 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed databases; Training; Machine learning; Mobile handsets; Data models; Servers; Neural networks; Federated learning; distributed machine learning; neural networks;

    机译:分布式数据库;培训;机器学习;移动手机;数据模型;服务器;神经网络;联合学习;分布式机器学习;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号