首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS Clouds
【24h】

GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS Clouds

机译:GRP-HEFT:IAAS云中的工作流程调度预算限制资源供应计划

获取原文
获取原文并翻译 | 示例

摘要

In Infrastructure as a Service (IaaS) Clouds, users are charged to utilize cloud services according to a pay-per-use model. If users intend to run their workflow applications on cloud resources within a specific budget, they have to adjust their demands for cloud resources with respect to this budget. Although several scheduling approaches have introduced solutions to optimize the makespan of workflows on a set of heterogeneous IaaS cloud resources within a certain budget, the hourly-based cost model of some well-known cloud providers (e.g., Amazon EC2 Cloud) can easily lead to a higher makespan and some schedulers may not find any feasible solution. In this article, we propose a novel resource provisioning mechanism and a workflow scheduling algorithm, named Greedy Resource Provisioning and modified HEFT (GRP-HEFT), for minimizing the makespan of a given workflow subject to a budget constraint for the hourly-based cost model of modern IaaS clouds. As a resource provisioning mechanism, we propose a greedy algorithm which lists the instance types according to their efficiency rate. For our scheduler, we modified the HEFT algorithm to consider a budget limit. GRP-HEFT is compared against state-of-the-art workflow scheduling techniques, including MOACS (MultiObjective Ant Colony System), PSO (Particle Swarm Optimization), and GA (Genetic Algorithm). The experimental results demonstrate that GRP-HEFT outperforms GA, PSO, and MOACS for several well-known scientific workflow applications for different problem sizes on average by 13.64, 19.77, and 11.69 percent, respectively. Also in terms of time complexity, GRP-HEFT outperforms GA, PSO and MOACS.
机译:在基础架构中作为服务(IAAS)云,用户被收取根据每次使用付费型号使用云服务。如果用户打算在特定预算的云资源上运行工作流程应用程序,他们必须在此预算方面调整对云资源的需求。虽然有几种调度方法引入了在一定预算中优化了在一套异构IAAS云资源上优化工作流程的Mapspan,但一些众所周知的云提供商(例如,亚马逊EC2云)的基于每小时的成本模型很容易导致更高的MakeSpan和一些调度程序可能找不到任何可行的解决方案。在本文中,我们提出了一种新颖的资源供应机制和工作流程调度算法,名为贪婪资源供应和修改的HEFT(GRP-HEFT),以最大限度地减少给定工作流程的MEPESPAN,这对按时的成本模型进行预算约束现代IAAS云。作为资源供应机制,我们提出了一种贪婪算法,其根据其效率率列出了实例类型。对于我们的调度程序,我们修改了HEFT算法以考虑预算限制。将GRP-HEFT与最先进的工作流程调度技术进行比较,包括Moacs(多目标蚁群系统),PSO(粒子群优化)和GA(遗传算法)。实验结果表明,GRP-HEFT优于GA,PSO和MOAC,用于几种着名的科学工作流程应用,平均分别为不同的问题尺寸为13.64,19.77和11.69%。同样在时间复杂性方面,GRP-HEFT优于GA,PSO和MOAC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号