首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Single Restart with Time Stamps for Parallel Task Processing with Known and Unknown Processors
【24h】

Single Restart with Time Stamps for Parallel Task Processing with Known and Unknown Processors

机译:单次重启,带有具有已知和未知处理器的并行任务处理的时间戳

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of scheduling n tasks on m + m' parallel processors, where the processing times on m processors are known while those on the remaining m' processors are not known a priori. This semi-online model is an abstraction of certain heterogeneous computing systems, e.g., with them known processors representing local CPU cores and the unknown processors representing remote servers with uncertain availability of computing cycles. Our objective is to minimize the makespan of all tasks. We initially focus on the case m' = 1 and propose a semi-online algorithm termed Single Restart with Time Stamps (SRTS), which has time complexity O(nlogn). We derive its competitive ratio in comparison with the optimal offline solution. If the unknown processing times are deterministic, the competitive ratio of SRTS is shown to be either always constant or asymptotically constant in practice, respectively in cases where the processing times are independent and dependent on m. A similar result is obtained when the unknown processing times are random. Furthermore, extending the ideas of SRTS, we propose a heuristic algorithm termed SRTS-Multiple (SRTS-M) for the case m' > 1. Finally, where tasks arrive dynamically with unknown arrival times, we extend SRTS to Dynamic SRTS (DSRTS) and find its competitive ratio. Besides the proven competitive ratios, simulation results further suggest that SRTS and SRTS-M give superior performance on average over randomly generated task processing times, substantially reducing the makespan over the best known alternatives. Interestingly, the performance gain is more significant for task processing times sampled from heavy-tailed distributions.
机译:我们研究了在M + M并行处理器上调度N个任务的问题,其中M处理器上的处理时间是已知的,而剩余的M'处理器上的那些不知道先验。该半球合型模型是某些异构计算系统的抽象,例如,具有代表本地CPU内核的已知处理器和代表具有计算周期不确定可用性的远程服务器的未知处理器。我们的目标是最大限度地减少所有任务的Mapspan。我们最初关注案例M'= 1并提出半球合因算法,随着时间戳(SRTS),它具有时间戳(SRT),其具有时间复杂度O(NLogn)。我们与最优离线解决方案相比,我们获得了竞争比率。如果未知的处理时间是确定性的,则在处理时间独立并且依赖于M的情况下,分别在实践中始终恒定或渐近恒定的SRTs竞争比。当未知的处理时间是随机的时,获得了类似的结果。此外,扩展SRT的思想,我们提出了一种引发算法称为SRTS-Multimute(SRTS-M)的案例M'> 1。最后,任务动态到达到达时间,我们将SRT扩展到动态SRT(DSRTS)。并找到它的竞争比率。除了经过验证的竞争比例外,仿真结果还表明,SRTS和SRTS-M平均过度产生的性能优异,在随机产生的任务处理时间内,基本上减少了最佳已知替代方案的Makespan。有趣的是,对于从重型分布采样的任务处理时间来说,性能增益更为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号