首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Probabilistic Consistency Guarantee in Partial Quorum-Based Data Store
【24h】

Probabilistic Consistency Guarantee in Partial Quorum-Based Data Store

机译:基于部分仲裁数据存储中的概率一致性保证

获取原文
获取原文并翻译 | 示例

摘要

Many NoSQL databases support quorum-based protocols, which require a subset of replicas (called a quorum) to respond to each write/read operation. These systems configure the quorum size to tune the operation latency and adopt multiple consistency levels. Some recent works illustrate that using probability models to quantify the chance of reading the last update is important because it could avoid returning stale values under eventual consistency. There are two challenging issues: (1) from inconsistent replicas, how to determine the minimum quorum size (i.e., the lowest access latency) to read the newest data at a specified probability; (2) node failure frequently happens in large-scale systems, how to guarantee the probability-based consistent reads. This article presents Probabilistic Consistency Guarantee (PCG), which is the first dynamic quorum decision and failure-aware quantification model. PCG model respectively quantifies the server-side consistency after the latest write, which reflects the object's time-varying update progress, and the possibility of reading this update when responding to the end-users. Our theoretical analysis derives several formulas to determine the quorum size of a read quorum and the consensus result selected from this quorum is the data updated by the last write at the user-specified probability. When some replicas are unavailable, our model knows how to rescale the quorum and read values from surviving replicas could reduce the stale reads caused by node failures. The experimental results in Cassandra demonstrate that the PCG model can achieve up to 77.7 percent more accurate predictions and reduce up to 48.9 percent read latency than those of the previous model.
机译:许多NoSQL数据库支持基于仲裁的协议,该协议需要副本(称为仲裁)的子集来响应每个写入/读取操作。这些系统配置仲裁大小以调整操作延迟并采用多个一致性等级。一些最近的作品说明,使用概率模型来量化阅读最后更新的机会很重要,因为它可以避免在最终一致性下返回陈旧值。有两个具有挑战性的问题:(1)从不一致的副本中,如何确定最小法定量(即,最低访问延迟)以在指定概率上读取最新数据; (2)节点故障经常发生在大型系统中,如何保证基于概率的一致读数。本文介绍了概率一致性保证(PCG),即第一个动态仲裁决策和故障感知量化模型。 PCG模型分别在最新写入后定量服务器端一致性,这反映了对象的时变更新进度,以及在响应最终用户时读取此更新的可能性。我们的理论分析导出了多种公式来确定读取仲裁的仲裁大小,并且从此仲裁中选择的共识结果是由最后一次写入以用户指定的概率更新的数据。当某些副本不可用时,我们的模型知道如何重新归类仲裁和来自幸存副本的读取值可以减少由节点故障引起的陈旧读数。 Cassandra的实验结果表明,PCG模型可以比以前模型的更准确的预测结果达到高达77.7%的准确预测,并减少高达48.9%的读取延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号