首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Scalable global and local hashing strategies for duplicate pruning in parallel A* graph search
【24h】

Scalable global and local hashing strategies for duplicate pruning in parallel A* graph search

机译:可扩展的全局和局部哈希算法,用于并行A *图搜索中的重复修剪

获取原文
获取原文并翻译 | 示例

摘要

For many applications of the A* algorithm, the state space is a graph rather than a tree. The implication of this for parallel A* algorithms is that different processors may perform significant duplicated work if interprocessor duplicates are not pruned. In this paper, we consider the problem of duplicate pruning in parallel A* graph-search algorithms implemented on distributed-memory machines. A commonly used method for duplicate pruning uses a hash function to associate with each distinct node of the search space a particular processor to which duplicate nodes arising in different processors are transmitted and thereby pruned. This approach has two major drawbacks. First, load balance is determined solely by the hash function. Second, node transmissions for duplicate pruning are global; this can lead to hot spots and slower message delivery. To overcome these problems, we propose two different duplicate pruning strategies: 1) To achieve good load balance, we decouple the task of duplicate pruning from load balancing, by using a hash function for the former and a load balancing scheme for the latter. 2) A novel search-space partitioning scheme that allocates disjoint parts of the search space to disjoint subcubes in a hypercube (or disjoint processor groups in the target architecture), so that duplicate pruning is achieved with only intrasubcube or adjacent intersubcube communication. Thus message latency and hot-spot probability are greatly reduced. The above duplicate pruning schemes were implemented on an nCUBE2 hypercube multicomputer to solve the Traveling Salesman Problem (TSP). For uniformly distributed intercity costs, our strategies yield a speedup improvement of 13 to 35 percent on 1,024-processors over previous methods that do not prune any duplicates, and 13 to 25 percent over the previous hashing-only scheme. For normally distributed data the corresponding figures are 135 percent and 10 to 155 percent. Finally, we analyze the scalability of our parallel A* algorithms on k-ary n-cube networks in terms of the isoefficiency metric, and show that they have isoefficiency lower and upper bounds of /spl Theta/(P log P) and /spl Theta/(Pkn/sup 2/), respectively.
机译:对于A *算法的许多应用,状态空间是图而不是树。这对并行A *算法的含义是,如果不修剪处理器间重复项,则不同的处理器可能执行大量重复的工作。在本文中,我们考虑了在分布式内存计算机上实现的并行A *图搜索算法中的重复修剪问题。重复修剪的常用方法是使用哈希函数将搜索处理器的每个不同节点与特定处理器相关联,将不同处理器中出现的重复节点传输到该特定处理器并进行修剪。这种方法有两个主要缺点。首先,负载平衡仅由哈希函数确定。其次,用于重复修剪的节点传输是全局的;这会导致热点和较慢的邮件传递。为了克服这些问题,我们提出了两种不同的重复修剪策略:1)为了实现良好的负载平衡,我们通过使用前者的哈希函数和后者的负载平衡方案,将重复修剪的任务与负载平衡分离。 2)一种新颖的搜索空间分区方案,该方案将搜索空间的不相交部分分配给超多维数据集中的不相交子多维数据集(或目标体系结构中不相交的处理器组),从而仅使用子内部多维数据集或相邻子多维数据集之间的通信即可实现重复修剪。因此,大大减少了消息等待时间和热点概率。以上重复修剪方案是在nCUBE2超立方体多计算机上实现的,以解决旅行商问题(TSP)。对于均匀分布的城际成本,我们的策略在1,024个处理器上比不修剪任何重复项的以前方法的速度提高了13%至35%,在以前的仅哈希处理的方案中的速度提高了13%至25%。对于正态分布的数据,相应的数字为135%和10至155%。最后,我们根据等效率指标分析了并行A *算法在k元n立方网络上的可伸缩性,并表明它们具有/ spl Theta /(P log P)和/ spl的等效率上下限。 θ/(Pkn / sup 2 /)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号