首页> 外文期刊>Neural processing letters >Discrete Multi-graph Hashing for Large-Scale Visual Search
【24h】

Discrete Multi-graph Hashing for Large-Scale Visual Search

机译:用于大规模视觉搜索的离散多图散列

获取原文
获取原文并翻译 | 示例

摘要

Hashing has become a promising technique to be applied to the large-scale visual retrieval tasks. Multi-view data has multiple views, providing more comprehensive information. The challenges of using hashing to handle multi-view data lie in two aspects: (1) How to integrate multiple views effectively? (2) How to reduce the distortion error in the quantization stage? In this paper, we propose a novel hashing method, called discrete multi-graph hashing (DMGH), to address the above challenges. DMGH uses a multi-graph learning technique to fuse multiple views, and adaptively learns the weights of each view. In addition, DMGH explicitly minimizes the distortion errors by carefully designing a quantization regularization term. An alternative algorithm is developed to solve the proposed optimization problem. The optimization algorithm is very efficient due to the low-rank property of the anchor graph. The experiments on three large-scale datasets demonstrate the proposed method outperforms the existing multi-view hashing methods.
机译:哈希已成为一个有希望应用于大规模视觉检索任务的技术。多视图数据具有多种视图,提供更全面的信息。使用散列处理多视图数据的挑战在两个方面:(1)如何有效地集成多个视图? (2)如何减少量化阶段中的失真误差?在本文中,我们提出了一种新颖的散列方法,称为离散多图散列(DMGH),以解决上述挑战。 DMGH使用多图学习技术来保险熔断多个视图,并自适应地了解每个视图的权重。此外,DMGH通过仔细设计量化正则化术语显式最小化失真误差。开发了一种替代算法来解决所提出的优化问题。由于锚图的低秩属性,优化算法非常有效。三个大型数据集的实验证明了所提出的方法优于现有的多视图散列方法。

著录项

  • 来源
    《Neural processing letters》 |2019年第3期|1055-1069|共15页
  • 作者单位

    Changsha Univ Sci & Technol Hunan Prov Key Lab Intelligent Proc Big Data Tran Changsha 410114 Hunan Peoples R China|Changsha Univ Sci & Technol Sch Comp & Commun Engn Changsha 410114 Hunan Peoples R China|Changsha Univ Sci & Technol Hunan Prov Key Lab Smart Roadway & Cooperat Vehic Changsha 410114 Hunan Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China;

    Cent South Univ Forestry & Technol Coll Comp Sci & Informat Technol Changsha 410004 Hunan Peoples R China;

    Changsha Univ Sci & Technol Sch Traff & Transportat Engn Changsha 410114 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hashing; Multi-graph; Multi-view data; Retrieval;

    机译:散列;多图;多视图数据;检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号