首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Low expansion packings and embeddings of hypercubes into star graphs: a performance-oriented approach
【24h】

Low expansion packings and embeddings of hypercubes into star graphs: a performance-oriented approach

机译:低膨胀包装和超立方体嵌入星状图:一种基于性能的方法

获取原文
获取原文并翻译 | 示例

摘要

We discuss the problem of packing hypercubes into an n-dimensional star graph S(n), which consists of embedding a disjoint union of hypercubes U into S(n) with load one. Hypercubes in U have from [n/2] to (n+1)/spl middot/[log/sub 2/ n]-2([lod/sub 2]+1)+2 dimensions, i.e., they can be as large as any hypercube which can be embedded with dilation at most four into S(n). We show that U can be embedded into S(n) with optimal expansion, which contrasts with the growing expansion ratios of previously known techniques. We employ several performance metrics to show that, with our techniques, a star graph can efficiently execute heterogeneous workloads containing hypercube, mesh, and star graph algorithms. The characterization of our packings includes some important metrics which have not been addressed by previous research (namely, average dilation, average congestion, and congestion). Our packings consistently produce small average congestion and average dilation, which indicates that the induced communication slowdown is also small. We consider several combinations of node mapping functions and routing algorithms in S(n), and obtain their corresponding performance metrics using either mathematical analysis or computer simulation.
机译:我们讨论将超立方体打包到n维星形图S(n)中的问题,该问题包括将超立方体U的不交集并入到载荷为1的S(n)中。 U中的超立方体具有[n / 2]到(n + 1)/ spl middot / [log / sub 2 / n] -2([lod / sub 2 / n] +1)+2维度,即它们可以与任何超立方体一样大,超立方体最多可以通过膨胀嵌入到S(n)中。我们证明了U可以以最佳扩展嵌入S(n),这与以前已知技术的增长扩展率形成了鲜明对比。我们采用了几种性能指标来表明,通过我们的技术,星形图可以有效地执行包含超立方体,网格和星形图算法的异构工作负载。我们包装的特征包括一些重要的指标,以前的研究尚未解决(即平均膨胀,平均拥堵和拥堵)。我们的包装始终会产生较小的平均拥塞和平均膨胀,这表明诱发的通信速度也较小。我们考虑了S(n)中节点映射函数和路由算法的几种组合,并使用数学分析或计算机仿真获得它们相应的性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号