首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication
【24h】

Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication

机译:基于超图分区的并行稀疏矩阵矢量乘法分解

获取原文
获取原文并翻译 | 示例

摘要

In this work, we show that the standard graph-partitioning-based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrix-vector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the well-known hypergraph partitioning problem. The recently proposed successful multilevel framework is exploited to develop a multilevel hypergraph partitioning tool PaToH for the experimental verification of our proposed hypergraph models. Experimental results on a wide range of realistic sparse test matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test matrices, the hypergraph models using PaToH and hMeTiS result in up to 63 percent less communication volume (30 to 38 percent less on the average) than the graph model using MeTiS, while PaToH is only 1.3-2.3 times slower than MeTiS on the average.
机译:在这项工作中,我们表明稀疏矩阵的基于图分区的标准分解不能反映并行矩阵矢量乘法的实际通信量要求。我们提出了两个计算超图模型,它们避免了图模型的这一关键缺陷。所提出的模型将分解问题简化为众所周知的超图分区问题。利用最近提出的成功的多级框架来开发多级超图分区工具PaToH,以对我们提出的超图模型进行实验验证。在各种现实的稀疏测试矩阵上的实验结果证实了所提出的超图模型的有效性。在测试矩阵的分解中,使用PaToH和hMeTiS的超图模型比使用MeTiS的图模型最多减少63%的通信量(平均减少30%至38%),而PaToH仅慢1.3-2.3倍比MeTiS平均而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号