首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Modeling Propagation Dynamics of Social Network Worms
【24h】

Modeling Propagation Dynamics of Social Network Worms

机译:社交网络蠕虫传播动力学建模

获取原文
获取原文并翻译 | 示例

摘要

Social network worms, such as email worms and facebook worms, pose a critical security threat to the Internet. Modeling their propagation dynamics is essential to predict their potential damages and develop countermeasures. Although several analytical models have been proposed for modeling propagation dynamics of social network worms, there are two critical problems unsolved: temporal dynamics and spatial dependence. First, previous models have not taken into account the different time periods of Internet users checking emails or social messages, namely, temporal dynamics. Second, the problem of spatial dependence results from the improper assumption that the states of neighboring nodes are independent. These two problems seriously affect the accuracy of the previous analytical models. To address these two problems, we propose a novel analytical model. This model implements a spatial-temporal synchronization process, which is able to capture the temporal dynamics. Additionally, we find the essence of spatial dependence is the spreading cycles. By eliminating the effect of these cycles, our model overcomes the computational challenge of spatial dependence and provides a stronger approximation to the propagation dynamics. To evaluate our susceptible-infectious-immunized (SII) model, we conduct both theoretical analysis and extensive simulations. Compared with previous epidemic models and the spatial-temporal model, the experimental results show our SII model achieves a greater accuracy. We also compare our model with the susceptible-infectious-susceptible and susceptible-infectious-recovered models. The results show that our model is more suitable for modeling the propagation of social network worms.
机译:社交网络蠕虫,例如电子邮件蠕虫和facebook蠕虫,对互联网构成了严重的安全威胁。对它们的传播动力学进行建模对于预测其潜在危害和制定对策至关重要。尽管已经提出了几种用于对社交网络蠕虫的传播动力学进行建模的分析模型,但仍有两个尚未解决的关键问题:时间动力学和空间依赖性。首先,先前的模型没有考虑互联网用户检查电子邮件或社交消息的不同时间段,即时间动态。其次,空间依赖性的问题是由不正确的假设所致,即相邻节点的状态是独立的。这两个问题严重影响了先前分析模型的准确性。为了解决这两个问题,我们提出了一种新颖的分析模型。该模型实现了时空同步过程,该过程能够捕获时态动态。此外,我们发现空间依赖性的本质是扩展周期。通过消除这些循环的影响,我们的模型克服了空间依赖性的计算难题,并为传播动力学提供了更强的近似性。为了评估我们的易感性免疫接种(SII)模型,我们进行了理论分析和广泛的模拟。与以前的流行病模型和时空模型相比,实验结果表明我们的SII模型具有更高的准确性。我们还将我们的模型与易感感染易感模型和易感感染恢复模型进行了比较。结果表明,我们的模型更适合于对社交网络蠕虫的传播进行建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号