首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Coordinated Self-Configuration of Virtual Machines and Appliances Using a Model-Free Learning Approach
【24h】

Coordinated Self-Configuration of Virtual Machines and Appliances Using a Model-Free Learning Approach

机译:使用无模型学习方法的虚拟机和设备的协调自配置

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing has a key requirement for resource configuration in a real-time manner. In such virtualized environments, both virtual machines (VMs) and hosted applications need to be configured on-the-fly to adapt to system dynamics. The interplay between the layers of VMs and applications further complicates the problem of cloud configuration. Independent tuning of each aspect may not lead to optimal system wide performance. In this paper, we propose a framework, namely CoTuner, for coordinated configuration of VMs and resident applications. At the heart of the framework is a model-free hybrid reinforcement learning (RL) approach, which combines the advantages of Simplex method and RL method and is further enhanced by the use of system knowledge guided exploration policies. Experimental results on Xen-based virtualized environments with TPC-W and TPC-C benchmarks demonstrate that CoTuner is able to drive a virtual server cluster into an optimal or near-optimal configuration state on the fly, in response to the change of workload. It improves the systems throughput by more than 30 percent over independent tuning strategies. In comparison with the coordinated tuning strategies based on basic RL or Simplex algorithm, the hybrid RL algorithm gains 25 to 40 percent throughput improvement.
机译:云计算对实时配置资源具有关键要求。在这种虚拟化环境中,虚拟机(VM)和托管应用程序都需要动态配置以适应系统动态。 VM和应用程序各层之间的相互作用进一步使云配置问题变得更加复杂。每个方面的独立调整可能不会导致最佳的系统范围性能。在本文中,我们提出了一个框架,即CoTuner,用于VM和驻留应用程序的协调配置。该框架的核心是一种无模型的混合强化学习(RL)方法,该方法结合了Simplex方法和RL方法的优势,并通过使用系统知识指导的探索策略得到了进一步的增强。在具有TPC-W和TPC-C基准的基于Xen的虚拟化环境上的实验结果表明,CoTuner能够响应工作负载的变化而将虚拟服务器群集动态地驱动到最佳或接近最佳的配置状态。与独立的调整策略相比,它将系统吞吐量提高了30%以上。与基于基本RL或Simplex算法的协调调整策略相比,混合RL算法的吞吐量提高了25%到40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号