首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Energy Efficient Task Assignment with Guaranteed Probability Satisfying Timing Constraints for Embedded Systems
【24h】

Energy Efficient Task Assignment with Guaranteed Probability Satisfying Timing Constraints for Embedded Systems

机译:满足嵌入式系统时序约束且保证概率的节能任务分配

获取原文
获取原文并翻译 | 示例

摘要

The trade-off between system performance and energy efficiency (service time) is critical for battery-based embedded systems. Most of the previous work focuses on saving energy in a deterministic way by taking the average or worst scenario into account. However, such deterministic approaches usually are inappropriate in modeling energy consumption because of uncertainties in conditional instructions on processors and time-varying external environments (e.g., fluctuant network bandwidth and different user inputs). By adopting a probabilistic approach, this paper proposes a model and a set of algorithms to address the Processor and Voltage Assignment with Probability (PVAP) problem of data-dependent aperiodic tasks in real-time embedded systems, ensuring that all the tasks can be done under the time constraint with a guaranteed probability. We adopt a task DAG (Directed Acyclic Graph) to model the PVAP problem. We first use a processor scheduling algorithm to map the task DAG onto a set of voltage-variable processors, and then use our dynamic programming algorithm to assign a proper voltage to each task. Finally, to escape from local optima, a local search with restarts searches the optimal solution from candidate solutions by updating the objective function, until the stop criteria are reached or a time bound is elapsed. The experimental results demonstrate that for probability 1.0, our approach yields slightly better results than the well-known algorithms like ASAP/ALAP (As Soon As Possible/As Late As Possible) and ILP (Integer Linear Programming) with/without DVS (Dynamic Voltage Scaling). However, for probabilities 0.8 and 0.9, our approach significantly outperforms those algorithms (maximum improvement of 50.3 percent).
机译:系统性能和能效(服务时间)之间的折衷对于基于电池的嵌入式系统至关重要。先前的大多数工作都集中在通过确定平均或最坏情况来确定性地节约能源。但是,由于处理器上的条件指令的不确定性和时变的外部环境(例如,波动的网络带宽和不同的用户输入),这种确定性方法通常不适用于能耗模型。通过采用一种概率方法,本文提出了一个模型和一组算法来解决实时嵌入式系统中与数据有关的非周期性任务的处理器和电压分配概率(PVAP)问题,从而确保可以完成所有任务在时间约束下具有保证的概率。我们采用任务DAG(有向无环图)来建模PVAP问题。我们首先使用处理器调度算法将任务DAG映射到一组电压可变处理器上,然后使用我们的动态编程算法为每个任务分配适当的电压。最后,为了摆脱局部最优,重新启动的局部搜索通过更新目标函数从候选解中搜索最优解,直到达到停止标准或经过一定的时限。实验结果表明,在概率为1.0的情况下,我们的方法所产生的结果要比诸如ASAP / ALAP(尽快/尽可能晚)和ILP(整数线性规划)(带有/不带有DVS(动态电压))的算法略好。缩放)。但是,对于概率0.8和0.9,我们的方法明显优于那些算法(最大改进为50.3%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号