首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >IMGPU: GPU-Accelerated Influence Maximization in Large-Scale Social Networks
【24h】

IMGPU: GPU-Accelerated Influence Maximization in Large-Scale Social Networks

机译:IMGPU:大型社交网络中GPU加速的影响力最大化

获取原文
获取原文并翻译 | 示例

摘要

Influence Maximization aims to find the top-$(K)$ influential individuals to maximize the influence spread within a social network, which remains an important yet challenging problem. Proven to be NP-hard, the influence maximization problem attracts tremendous studies. Though there exist basic greedy algorithms which may provide good approximation to optimal result, they mainly suffer from low computational efficiency and excessively long execution time, limiting the application to large-scale social networks. In this paper, we present IMGPU, a novel framework to accelerate the influence maximization by leveraging the parallel processing capability of graphics processing unit (GPU). We first improve the existing greedy algorithms and design a bottom-up traversal algorithm with GPU implementation, which contains inherent parallelism. To best fit the proposed influence maximization algorithm with the GPU architecture, we further develop an adaptive $(K)$-level combination method to maximize the parallelism and reorganize the influence graph to minimize the potential divergence. We carry out comprehensive experiments with both real-world and sythetic social network traces and demonstrate that with IMGPU framework, we are able to outperform the state-of-the-art influence maximization algorithm up to a factor of 60, and show potential to scale up to extraordinarily large-scale networks.
机译:影响力最大化的目的是找到具有最高影响力的人,以最大程度地扩大在社交网络中传播的影响力,这仍然是一个重要但具有挑战性的问题。被证明是NP难的,影响最大化问题吸引了大量的研究。尽管存在一些基本的贪心算法,它们可以为最佳结果提供良好的近似,但是它们主要受到计算效率低和执行时间过长的困扰,从而限制了其在大规模社交网络中的应用。在本文中,我们介绍了IMGPU,这是一种通过利用图形处理单元(GPU)的并行处理能力来加速影响最大化的新颖框架。我们首先改进现有的贪婪算法,并使用GPU实现设计自底向上遍历算法,该算法包含固有的并行性。为了使拟议的影响力最大化算法与GPU架构最匹配,我们进一步开发了一种自适应$(K)$级组合方法,以使并行度最大化,并重组影响图以最大程度地减少潜在差异。我们对现实世界和综合社交网络轨迹进行了全面的实验,并证明了使用IMGPU框架,我们可以将最先进的影响力最大化算法的性能提高到60倍,并显示出扩大规模的潜力直至超大型网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号