首页> 外文期刊>Future generation computer systems >A novel ITOE Algorithm for influence maximization in the large-scale social networks
【24h】

A novel ITOE Algorithm for influence maximization in the large-scale social networks

机译:大规模社交网络中影响力最大化的新型ITOE算法

获取原文
获取原文并翻译 | 示例

摘要

As a key problem in the social network, Influence Maximization(IM) has received extensive study. Since it is a well-known NP-complete problem, it is a great challenge to determine the initial diffusion seed nodes especially when the size of social network increases. In this paper, we firstly introduce a new index (named Node Key Degree, NKD) to denote the significance degree of each node. A node’s NKD is determined by two factors: (1) the number of its direct previous nodes, and (2) the number of its successor offsprings within a certain number of levels. Then, we propose a novel efficient ITÖ Algorithm to solve the IM problem, termed as ITÖ-IM. There are three properties and two operators in ITÖ-IM: the formers include particle’s radius, particle’s activeness and environmental temperature, the later ones are drift operator and fluctuate operator. During the searching process, the particles in ITÖ can cooperate with each other to effectively balance the contradictions between exploration and exploitation existing in most of meta-heuristic algorithms. In order to understand the strengths and weaknesses of ITÖ-IM, we have carried out extensive computational studies on the six real world datasets. Experimental results show that our algorithm achieves competitive results in influence spread as compared with other four state-of-the-art algorithms in the large-scale social networks.
机译:作为社交网络中的关键问题,影响力最大化(IM)已得到广泛研究。由于这是一个众所周知的NP完全问题,因此确定初始扩散种子节点是一个巨大的挑战,尤其是在社交网络规模增加时。在本文中,我们首先引入一个新的索引(称为节点关键程度,NKD)来表示每个节点的显着程度。节点的NKD由两个因素确定:(1)它的直接上一个节点的数量,以及(2)在一定数量的级别内其后代的数量。然后,我们提出了一种新的高效的ITÖ算法来解决IM问题,称为ITÖ-IM。 ITÖ-IM具有三个属性和两个运算符:前者包括粒子的半径,粒子的活动性和环境温度,后者是漂移算子和波动算子。在搜索过程中,ITÖ中的粒子可以相互协作,以有效地平衡大多数元启发式算法中存在的探索与开发之间的矛盾。为了了解ITÖ-IM的优缺点,我们对六个真实世界的数据集进行了广泛的计算研究。实验结果表明,与大型社交网络中的其他四种最新算法相比,我们的算法在影响力传播方面取得了竞争性的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号