首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >GPUSCAN: GPU-Based Parallel Structural Clustering Algorithm for Networks
【24h】

GPUSCAN: GPU-Based Parallel Structural Clustering Algorithm for Networks

机译:GPUSCAN:基于GPU的网络并行结构聚类算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a massively parallel implementation of a prominent network clustering algorithm, the structural clustering algorithm for networks (SCAN), on a graphical processing unit (GPU). SCAN is a fast and efficient clustering technique for finding hidden communities and isolating hubs/outliers within a network. However, for very large networks, it still takes considerable amount of time. With the introduction of massively parallel Compute Unified Device Architecture (CUDA) by Nvidia, applications properly employing GPUs are demonstrating high speed up. In current study, GPUSCAN, a CUDA based parallel implementation of SCAN, is presented. SCAN's computation steps have been carefully redesigned to run very efficiently on the GPU by transforming SCAN into a series of highly regular and independent concurrent operations. All intermediate data structures are created in the GPU to efficiently benefit from GPU's memory hierarchy. How these structures reformed and represented in the GPU memory hierarchy are illustrated. Now, through GPUSCAN, a large network or a batch of disjoint networks can be offloaded to the GPU for very fast and equivalent structural clustering. The performance of the GPU accelerated structural clustering has been shown to be much faster than the sequential CPU implementation. Both GPUSCAN and SCAN are tested on different size artificial and real-world networks. Results indicate that network becomes larger GPUSCAN significantly over performs SCAN. In tested datasets, speed-up of over 500-fold is achieved. For instance, calculating structural similarity and clustering of 5.5 million edges of the California road network in GPUSCAN is 513-fold faster than the serial version of SCAN.
机译:本文介绍了在图形处理单元(GPU)上大规模并行实现的一种著名的网络聚类算法,即网络的结构聚类算法(SCAN)。 SCAN是一种快速有效的群集技术,可用于查找隐藏的社区并隔离网络中的集线器/异常值。但是,对于非常大的网络,仍然需要花费大量时间。随着Nvidia大规模并行计算统一设备架构(CUDA)的推出,正确采用GPU的应用程序正在展示出更高的速度。在当前的研究中,介绍了GPUSCAN,这是基于CUDA的SCAN并行实现。通过将SCAN转换为一系列高度规则且独立的并发操作,精心设计了SCAN的计算步骤,使其在GPU上非常高效地运行。所有中间数据结构都在GPU中创建,以有效地受益于GPU的内存层次结构。说明了如何在GPU内存层次结构中重新构造和表示这些结构。现在,通过GPUSCAN,可以将大型网络或一批不相交的网络卸载到GPU,以进行非常快速且等效的结构集群。事实证明,GPU加速结构群集的性能比顺序CPU实施要快得多。 GPUSCAN和SCAN均在不同规模的人工和现实网络上进行了测试。结果表明,与执行SCAN相比,网络明显变得更大。在经过测试的数据集中,实现了超过500倍的加速。例如,在GPUSCAN中计算结构相似性和加利福尼亚州道路网络的550万边缘的聚类速度比串行版本的SCAN快513倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号