首页> 外文会议>IEEE International Conference on Electro/Information Technology >GPU-Based Parallel Implementation of K-Means Clustering Algorithm for Image Segmentation
【24h】

GPU-Based Parallel Implementation of K-Means Clustering Algorithm for Image Segmentation

机译:基于GPU的K均值聚类算法的图像分割并行实现

获取原文

摘要

Clustering algorithms group a dataset into clusters that have common features. Clustering has applications in computer vision, data mining, market segmentation etc. The k-means clustering algorithm is one of the most popular algorithms where the mean is used as a prototype of the cluster. In this paper, we explore accelerating the performance of k-means clustering using NVIDIA Graphics Processing Units (GPUs) programmed with CUDA C. Different optimization techniques are applied such as the use of shared memory for image data and the use of constant memory for cluster data. The performance results are evaluated on a range of images from small (256×256 pixels) to large (1024×1024 pixels) and number of clusters range from 4 to 256. We find that on an average, the parallel implementation has a 9x speed up as compared to the sequential version for 4 clusters. The speedup increases to 57x as number of clusters increase to 256. This implementation also performs better than a reference implementation from Northwestern University/UC Berkeley.
机译:聚类算法将数据集分为具有共同特征的聚类。聚类在计算机视觉,数据挖掘,市场细分等方面都有应用。k均值聚类算法是最受欢迎的算法之一,均值被用作聚类的原型。在本文中,我们探索了使用通过CUDA C编程的NVIDIA图形处理单元(GPU)来加速k均值聚类的性能。应用了不同的优化技术,例如对图像数据使用共享内存以及对群集使用常量内存数据。从小(256×256像素)到大(1024×1024像素)的图像范围评估了性能结果,并且簇数范围从4到256。我们发现平均而言,并行实现的速度是9倍与4个群集的顺序版本相比。随着群集数量增加到256,加速比提高到57倍。与西北大学/加州大学伯克利分校的参考实现相比,该实现的性能也更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号