首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >A Family of Bit-Representation-Optimized Formats for Fast Sparse Matrix-Vector Multiplication on the GPU
【24h】

A Family of Bit-Representation-Optimized Formats for Fast Sparse Matrix-Vector Multiplication on the GPU

机译:GPU上用于快速稀疏矩阵矢量乘法的一系列位表示优化格式

获取原文
获取原文并翻译 | 示例

摘要

Sparse matrix-vector multiplication (SpMV) is an important kernel that is used in many iterative algorithms for solving scientific and engineering problems. One of the main challenges of SpMV is its memory-boundedness due to the low arithmetic intensity of the kernel. Although compression has been proposed previously to improve SpMV performance on CPUs, its use has not been demonstrated on the GPU because of the serial nature of many compression and decompression schemes. In this paper, we introduce a family of bit-representation-optimized (BRO) compression formats for representing sparse matrices on GPUs. The proposed formats – BRO-CSR, BRO-ELL and BRO-HYB, perform compression on index data and help to speed up SpMV on GPUs through the reduction of memory traffic. We also propose two other hybrid BRO formats which can potentially perform better than both HYB and BRO-HYB formats. Experimental results demonstrate that compared to uncompressed CSR and ELLPACK formats, our proposed compressed BRO-CSR and BRO-ELL formats are able to achieve average speedups of 2 and 1.4 respectively. Furthermore, we demonstrate that by using BRO-ELL, the preconditioned conjugate gradient method is able to achieve an average speedup of 1.3 over ELLPACK.
机译:稀疏矩阵向量乘法(SpMV)是一个重要的内核,在许多迭代算法中使用它来解决科学和工程问题。 SpMV的主要挑战之一是由于内核的低算术强度而使其内存有限。尽管以前曾提出压缩来提高SpMV在CPU上的性能,但是由于许多压缩和解压缩方案的串行特性,尚未在GPU上证明其使用。在本文中,我们介绍了一系列位表示优化(BRO)压缩格式,用于表示GPU上的稀疏矩阵。提议的格式-BRO-CSR,BRO-ELL和BRO-HYB对索引数据执行压缩,并通过减少内存流量来帮助加速GPU上的SpMV。我们还提出了另外两种混合BRO格式,它们可能会比HYB和BRO-HYB格式表现更好。实验结果表明,与未压缩的CSR和ELLPACK格式相比,我们提出的压缩的BRO-CSR和BRO-ELL格式能够分别实现平均加速2和1.4。此外,我们证明了通过使用BRO-ELL,预处理的共轭梯度方法能够比ELLPACK实现平均1.3的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号