首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Influence Maximization on Large-Scale Mobile Social Network: A Divide-and-Conquer Method
【24h】

Influence Maximization on Large-Scale Mobile Social Network: A Divide-and-Conquer Method

机译:大规模移动社交网络上的影响最大化:分而治之

获取原文
获取原文并翻译 | 示例

摘要

With the proliferation of mobile devices and wireless technologies, mobile social network systems are increasingly available. A mobile social network plays an essential role as the spread of information and influence in the form of “word-of-mouth”. It is a fundamental issue to find a subset of influential individuals in a mobile social network such that targeting them initially (e.g., to adopt a new product) will maximize the spread of the influence (further adoptions of the new product). The problem of finding the most influential nodes is unfortunately NP-hard. It has been shown that a Greedy algorithm with provable approximation guarantees can give good approximation; However, it is computationally expensive, if not prohibitive, to run the greedy algorithm on a large mobile social network. In this paper, a divide-and-conquer strategy with parallel computing mechanism has been adopted. We first propose an algorithm called Community-based Greedy algorithm for mining top-K influential nodes. It encompasses two components: dividing the large-scale mobile social network into several communities by taking into account information diffusion and selecting communities to find influential nodes by a dynamic programming. Then, to further improve the performance, we parallelize the influence propagation based on communities and consider the influence propagation crossing communities. Also, we give precision analysis to show approximation guarantees of our models. Experiments on real large-scale mobile social networks show that the proposed methods are much faster than previous algorithms, meanwhile, with high accuracy.
机译:随着移动设备和无线技术的普及,移动社交网络系统越来越多。移动社交网络在以“口碑”的形式传播信息和产生影响方面起着至关重要的作用。在移动社交网络中找到有影响力的个人的子集是一个基本问题,这样一来就以他们为目标(例如,采用新产品)将最大限度地扩大影响力(进一步采用新产品)。不幸的是,找到最有影响力的节点的问题很困难。已经证明,具有可证明的近似保证的贪婪算法可以给出良好的近似。然而,在大型移动社交网络上运行贪婪算法在计算上是昂贵的,即使不是禁止的。本文采用并行计算的分治策略。我们首先提出一种称为“基于社区的贪婪算法”的算法,用于挖掘前K个有影响力的节点。它包含两个部分:通过考虑信息传播将大型移动社交网络划分为几个社区,以及通过动态编程选择社区以找到有影响力的节点。然后,为了进一步提高性能,我们基于社区并行化影响传播,并考虑跨社区的影响传播。另外,我们提供精度分析以显示我们模型的近似保证。在真实的大规模移动社交网络上的实验表明,所提出的方法比以前的算法要快得多,而且准确性很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号