首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >CLAP: Component-Level Approximate Processing for Low Tail Latency and High Result Accuracy in Cloud Online Services
【24h】

CLAP: Component-Level Approximate Processing for Low Tail Latency and High Result Accuracy in Cloud Online Services

机译:CLAP:云在线服务中的低延迟延迟和高结果准确性的组件级近似处理

获取原文
获取原文并翻译 | 示例

摘要

Modern latency-critical online services such as search engines often process requests by consulting large input data spanning massive parallel components. Hence the tail latency of these components determines the service latency. To trade off result accuracy for tail latency reduction, existing techniques use the components responding before a specified deadline to produce approximate results. However, they skip a large proportion of components when load gets heavier, thus incurring large accuracy losses. In this paper, we propose CLAP to enable component-level approximate processing of requests for low tail latency and small accuracy losses. CLAP aggregates information of input data to create small aggregated data points. Using these points, CLAP reduces latency variance of parallel components and allows them to produce initial results quickly; CLAP also identifies the parts of input data most related to requests’ result accuracies, thus first using these parts to improve the produced results to minimize accuracy losses. We evaluated CLAP using real services and datasets. The results show: (i) CLAP reduces tail latency by 6.46 times with accuracy losses of 2.2 percent compared to existing exact processing techniques; (ii) when using the same latency, CLAP reduces accuracy losses by 31.58 times compared to existing approximate processing techniques.
机译:诸如搜索引擎之类的对延迟时间要求严格的现代在线服务通常通过查询跨越大量并行组件的大型输入数据来处理请求。因此,这些组件的尾部等待时间决定了服务等待时间。为了权衡结果精度以减少尾部等待时间,现有技术使用了在指定期限之前做出响应的组件来产生近似结果。但是,当负载变重时,它们会跳过很大比例的组件,因此会导致较大的精度损失。在本文中,我们提出了CLAP,以实现对低尾部延迟和较小精度损失的请求的组件级近似处理。 CLAP聚合输入数据的信息以创建较小的聚合数据点。利用这些点,CLAP减少了并行组件的等待时间差异,并允许它们快速产生初始结果。 CLAP还可以识别输入数据中与请求结果准确性最相关的部分,因此首先使用这些部分来改进产生的结果,以最大程度地减少准确性损失。我们使用真实的服务和数据集评估了CLAP。结果表明:(i)与现有的精确处理技术相比,CLAP将尾部等待时间减少了6.46倍,准确性损失为2.2%; (ii)与现有的近似处理技术相比,当使用相同的延迟时,CLAP可以将准确性损失降低31.58倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号