首页> 外文期刊>International journal of parallel programming >SARP: Synopsis-Based Approximate Request Processing for Low Latency and Small Correctness Loss in Cloud Online Services
【24h】

SARP: Synopsis-Based Approximate Request Processing for Low Latency and Small Correctness Loss in Cloud Online Services

机译:SARP:基于概要的近似请求处理,可降低云在线服务中的低延迟和较小的正确性

获取原文
获取原文并翻译 | 示例

摘要

Despite the importance of providing quick responsiveness to user requests for online services, such request processing is very resource expensive when dealing with large-scale service datasets. These often exceed the service providers' budget when services are deployed on a cloud, in which resources are charged in monetary terms. Providing approximate processing results in request processing is a feasible solution for such problem that trades off result correctness (e.g. prediction or query accuracy) for response time reduction. However, existing techniques in this area either use parts of datasets or skip expensive computations to produce approximate results, thus resulting in large losses in result correctness on a tight resource budget. In this paper, we propose Synopsis-based Approximate Request Processing (SARP), a SARP framework to produce approximate results with small correctness losses even using small amount of resources. To achieve this, SARP conducts computations over synopses, which aggregate the statistical information of the entire service dataset at different approximation levels, based on two key ideas: (1) offline synopsis management that generates and maintains a set of synopses that represent the aggregation information of the dataset at different approximation levels. (2) Online synopsis selection that considers both the current resource allocation and the workload status so as to select the synopsis with the maximal length that can be processed within the required response time. We demonstrate the effectiveness of our approach by testing the recommendation services in e-commerce sites using a large, real-world dataset. Using prediction accuracy as the result correctness metric, the results demonstrate: (ⅰ) SARP achieves significant response time reduction with very small correctness losses compared to the exact processing results; (ⅱ) using the same processing time, SARP demonstrates a considerable reduction in correctness loss compared to existing approximation techniques.
机译:尽管提供对用户对在线服务请求的快速响应的重要性,但是在处理大规模服务数据集时,此类请求处理的资源非常昂贵。当将服务部署在云中时,这些费用通常超出了服务提供商的预算,在云中,资源是按货币计算的。在请求处理中提供近似的处理结果是针对这样的问题的可行解决方案,该问题需要权衡结果正确性(例如,预测或查询准确性)以减少响应时间。但是,该领域中的现有技术要么使用数据集的一部分,要么跳过昂贵的计算以产生近似结果,从而在资源紧张的情况下导致结果正确性的巨大损失。在本文中,我们提出了基于提要的近似请求处理(SARP),一种SARP框架,即使使用少量资源也可以产生具有较小正确性损失的近似结果。为实现此目的,SARP基于两个关键思想对概要进行计算,以不同的近似级别聚合整个服务数据集的统计信息:(1)离线概要管理,生成并维护代表聚合信息的一组概要数据集在不同的近似级别。 (2)在线提要选择,该提要考虑当前资源分配和工作量状态,以便选择在所需响应时间内可以处理的最大长度的提要。我们通过使用大型真实数据集在电子商务站点中测试推荐服务来证明我们方法的有效性。使用预测精度作为结果正确性度量,结果表明:(ⅰ)与精确的处理结果相比,SARP可显着减少响应时间,并且正确性损失非常小; (ⅱ)使用相同的处理时间,与现有的近似技术相比,SARP证明正确性损失显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号