首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data
【24h】

Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

机译:难压缩HPC数据的有界误差有损压缩的优化

获取原文
获取原文并翻译 | 示例

摘要

Since today's scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-to-compress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49 percent for hard-to-compress data sets with similar compression/ decompression time cost.
机译:由于当今的科学应用程序正在产生大量数据,因此在存储/传输之前对其进行压缩至关重要。现有压缩器的结果显示出两种类型的HPC数据集:高度可压缩和难以压缩。在这项工作中,我们为难以压缩的科学数据精心设计和优化了错误限制的有损压缩。我们提出了一种优化算法,该算法可以将HPC数据自适应地划分为最合适的连续段,每个段具有相互接近的数据值,从而可以优化压缩条件。另一个重要的贡献是移位偏移的优化,从而可以使两个连续不可预测的数据点之间的XOR超前零长度最大化。最后,我们设计了一种自适应方法,以便在运行时选择最适合的压缩机,以最大程度地提高压缩系数。我们根据实际的科学问题使用13个基准评估我们的解决方案,并将其与其他9个最先进的压缩机进行比较。实验表明,我们的压缩器始终可以保证用户指定的误差范围内的压缩误差。最重要的是,对于难以压缩的数据集,压缩/解压缩时间成本相近时,我们的优化可以有效地提高压缩系数达49%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号