首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Optimizing Egalitarian Performance when Colocating Tasks with Types for Cloud Data Center Resource Management
【24h】

Optimizing Egalitarian Performance when Colocating Tasks with Types for Cloud Data Center Resource Management

机译:将任务与类型并置以进行云数据中心资源管理时,优化平均性能

获取原文
获取原文并翻译 | 示例

摘要

In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but the performance of the tasks deteriorates, as the colocated tasks compete for shared resources. Since the tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [1] , [2] we proposed a new combinatorial optimization model that uses two parameters of a task - its size and its type - to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: the aim is to optimize the performance of the worst-off task. This problem generalizes the classic makespan minimization on multiple processors ($P||C_{max }$P||Cmax). We prove that polynomially-solvable variants of $P||C_{max }$P||Cmax are NP-hard for this generalization, and that the problem is hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Compared with baseline algorithms solving $P||C_{max }$P||Cmax, our proposed algorithms aware of the types of the jobs lead to significantly better tasks' performance. The notion of type enables us to extend standard combinatorial optimization methods to handle degradation of performance caused by colocation. Types add a layer of additional complexity. However, our results - approximation algorithms and good average-case performance - show that types can be handled efficiently.
机译:在数据中心中,一台物理计算机上最多可同时部署数十个任务。机器的使用效率更高,但是由于并置任务竞争共享资源,因此任务的性能下降。由于任务是异构的,因此产生的性能依赖性也很复杂。在我们先前的工作[1],[2]中,我们提出了一个新的组合优化模型,该模型使用任务的两个参数(任务的大小和类型)来表征任务如何影响分配给同一台机器的其他任务的性能。在本文中,我们研究了均等优化目标:目标是优化最差任务的性能。此问题使多个处理器($ P || C _ { max} $ P || Cmax)上的经典makepan最小化。我们证明$ P || C _ { max} $ P || Cmax的多项式可解决的变体对于这种泛化是NP-难的,并且当类型的数量不是恒定的时,很难估计这个问题。对于恒定数量的类型,我们提出了PTAS,快速近似算法和一系列启发式方法。我们在实例上模拟算法,这些实例是从Google集群之一的痕迹中得出的。与解决$ P || C _ { max} $ P || Cmax的基线算法相比,我们提出的算法了解作业的类型,可以显着改善任务的性能。类型的概念使我们能够扩展标准的组合优化方法,以处理由于托管带来的性能下降。类型增加了一层额外的复杂性。但是,我们的结果-近似算法和良好的平均用例性能-表明类型可以得到有效处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号