首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A Holistic Energy-Efficient Real-Time Scheduler for Mixed Stream and Batch Processing Workloads
【24h】

A Holistic Energy-Efficient Real-Time Scheduler for Mixed Stream and Batch Processing Workloads

机译:用于混合流和批处理工作负载的整体节能实时调度器

获取原文
获取原文并翻译 | 示例

摘要

In recent years we have experienced a wide adoption of novel distributed processing frameworks such as Apache Spark for handling batch and stream processing big data applications. An important aspect that has not been examined in these systems yet, is the energy consumption during the applications' execution. Reducing the energy consumption of modern datacenters is a necessity, as datacenters contribute over 2 percent of the total US electric usage. However, efficiently scheduling applications in distributed processing systems can be challenging as there is a trade-off between minimizing the datacenter & x0027;s energy usage and satisfying the application performance requirements. In this work we propose, ExpREsS, a scheduler for orchestrating the execution of Spark applications in a way that enables us to minimize the energy consumption while ensuring that the applications' performance requirements are met. Our approach exploits time-series segmentation for capturing the applications' energy usage and execution times, and then applies a novel DVFS technique to minimize the energy consumption. In order to tackle the limited number of application & x0027;s profiling runs, we exploit regression techniques to predict the applications' execution times and power consumption. Our detailed experimental evaluation using realistic workloads on our local cluster illustrates the working and benefits of our approach.
机译:近年来,我们经历了新颖的分布式处理框架的广泛采用,例如Apache Spark,用于处理批处理和流处理大数据应用程序。在这些系统中尚未检查的重要方面是应用程序执行期间的能耗。减少现代数据中心的能耗是必要的,因为数据中心占美国总用电量的2%以上。但是,在最小化数据中心的能耗与满足应用程序性能要求之间需要权衡取舍,因此在分布式处理系统中高效地调度应用程序可能会面临挑战。在这项工作中,我们提出了ExpREsS,这是一种调度程序,用于以某种方式协调Spark应用程序的执行,使我们能够在确保满足应用程序性能要求的同时将能耗降至最低。我们的方法利用时间序列分段来捕获应用程序的能源使用和执行时间,然后应用新颖的DVFS技术将能耗降至最低。为了解决有限数量的应用程序分析运行,我们利用回归技术来预测应用程序的执行时间和功耗。我们使用本地集群上的实际工作负载进行了详细的实验评估,这说明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号