首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Maximum Data-Resolution Efficiency for Fog-Computing Supported Spatial Big Data Processing in Disaster Scenarios
【24h】

Maximum Data-Resolution Efficiency for Fog-Computing Supported Spatial Big Data Processing in Disaster Scenarios

机译:灾难场景中雾计算支持的空间大数据处理的最大数据解析效率

获取原文
获取原文并翻译 | 示例

摘要

Spatial big data analysis is very important in disaster scenarios to understand distribution patterns of situations, e.g., people's movements, people's requirements, resource shortage situations, and so on. In a general case, spatial big data is generated from distributed sensing devices and analyzed in a centralized way, e.g., a cloud center with high-performance computing resources. However, data transmission from sensing devices to cloud centers always takes a long time, especially in disaster scenarios with an unstable network. Fog computing is a promising technique to solve the above problem by offloading data processing tasks from the cloud to nearby computation devices. But data resolution also decreases after local processing in the fog nodes. It is necessary to investigate the optimal task distribution solutions to efficiently use computation resources in the fog layer. In this paper, we take the above research problem, and study fog-computing supported spatial big data processing. We analyze the process for spatial clustering, which is a typical category for spatial data analysis, and propose an architecture to integrate data processing into fog computing. We formalize a problem to maximize the data-resolution efficiency by considering data resolution and delay. We further propose core algorithms to enable spatial clustering in a fog-computing environment and implement the above algorithms in a real system. We have performed both simulations and experiments on a real Twitter dataset collected when Kumamoto-city suffered an earthquake. Through the simulations and the experiments, we have determined that the proposed solution significantly outperforms the other solutions.
机译:在灾难场景中,空间大数据分析对于了解情况的分布模式(例如人们的动向,人们的需求,资源短缺情况等)非常重要。通常,空间大数据是从分布式传感设备生成的,并以集中方式进行分析,例如具有高性能计算资源的云中心。但是,从传感设备到云中心的数据传输始终需要很长时间,尤其是在网络不稳定的灾难情况下。雾计算是一种有前途的技术,可以通过将数据处理任务从云上卸载到附近的计算设备来解决上述问题。但是,在雾节点中进行本地处理后,数据分辨率也会降低。有必要研究最佳任务分配解决方案以有效地使用雾层中的计算资源。在本文中,我们针对上述研究问题,研究了雾计算支持的空间大数据处理。我们分析了空间聚类的过程,这是空间数据分析的典型类别,并提出了一种将数据处理集成到雾计算中的体系结构。我们通过考虑数据分辨率和延迟来规范化一个问题,以最大程度地提高数据分辨率。我们进一步提出了核心算法,以在雾计算环境中实现空间聚类,并在实际系统中实现上述算法。我们在熊本市遭受地震时收集的真实Twitter数据集上进行了模拟和实验。通过仿真和实验,我们确定了所提出的解决方案明显优于其他解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号