首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A Compiler for Agnostic Programming and Deployment of Big Data Analytics on Multiple Platforms
【24h】

A Compiler for Agnostic Programming and Deployment of Big Data Analytics on Multiple Platforms

机译:在多个平台上进行大数据分析不可知编程和部署的编译器

获取原文
获取原文并翻译 | 示例

摘要

To run proper Big Data Analytics, small and medium enterprises (SMEs) need to acquire expertise, hardware and software, which often translates to relevant initial investments for activities not directly connected to the company's business. To reduce such investments, the TOREADOR project proposes a Big Data Analytics framework which supports users in devising their own Big Data solutions by keeping the inherent costs at a minimum, and leveraging pre-existent knowledge and expertise. Among the objectives of the TOREADOR framework is supporting developers in parallelizing and deploying their Big Data algorithms, in order to develop their own analytics solutions. This paper describes the Code-Based approach, adopted within the TOREADOR framework to parallelize users' algorithms and deploy them on distributed platforms, via the annotation of parallelizable code portions with parallelization primitives. The approach, which relies on the guidance of Parallel Patterns to implement the parallelization, and on Skeletons to automatically build execution and deployment templates, is realized through a source-to-source Compiler, also described in the present paper.
机译:为了运行适当的大数据分析,中小型企业(SME)需要获得专业知识,硬件和软件,这通常转化为与公司业务不直接相关的活动的相关初始投资。为了减少此类投资,TOREADOR项目提出了一个大数据分析框架,该框架通过将固有成本保持在最低水平并利用已有的知识和专业知识来支持用户设计自己的大数据解决方案。 TOREADOR框架的目标之一是支持开发人员并行化和部署其大数据算法,以便开发自己的分析解决方案。本文介绍了基于代码的方法,该方法在TOREADOR框架内采用,用于通过使用可并行化原语对可并行化代码部分进行注释,来并行化用户算法并将其部署在分布式平台上。该方法还依赖于并行模式的指导来实现并行化,并依靠Skeletons自动构建执行和部署模板,该方法是通过源到源编译器实现的,本文也对此进行了描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号