首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Integrating Concurrency Control in n-Tier Application Scaling Management in the Cloud
【24h】

Integrating Concurrency Control in n-Tier Application Scaling Management in the Cloud

机译:将并发控制集成到云中的n层应用程序扩展管理中

获取原文
获取原文并翻译 | 示例

摘要

Scaling complex distributed systems such as e-commerce is an importance practice to simultaneously achieve high performance and high resource efficiency in the cloud. Most previous research focuses on hardware resource scaling to handle runtime workload variation. Through extensive experiments using a representative n-tier web application benchmark (RUBBoS), we demonstrate that scaling an n-tier system by adding or removing VMs without appropriately re-allocating soft resources (e.g., server threads and connections) may lead to significant performance degradation resulting from implicit change of request processing concurrency in the system, causing either over-or under-utilization of the critical hardware resource in the system. We build a concurrency-aware model that determines a near optimal soft resource allocation of each tier by combining some operational queuing laws and the fine-grained online measurement data of the system. We then develop a dynamic concurrency management (DCM) framework that integrates the concurrency-aware model to intelligently reallocate soft resources in the system during the system scaling process. We compare DCM with Amazon EC2-AutoScale, the state-of-the-art hardware only scaling management solution using six real-world bursty workload traces. The experimental results show that DCM achieves significantly shorter tail latency and higher throughput compared to Amazon EC2-AutoScale under all the workload traces.
机译:扩展复杂的分布式系统(例如电子商务)是在云中同时实现高性能和高资源效率的重要实践。以前的大多数研究都集中在硬件资源扩展上,以处理运行时工作负载变化。通过使用具有代表性的n层Web应用程序基准(RUBBoS)进行的广泛实验,我们证明了通过添加或删除VM而不适当重新分配软资源(例如,服务器线程和连接)来扩展n层系统可能会带来显着的性能系统中请求处理并发性的隐式更改导致性能下降,从而导致系统中关键硬件资源的过度利用或利用不足。我们建立了一个并发感知模型,通过结合一些操作排队定律和系统的细粒度在线测量数据来确定每层的近乎最佳的软资源分配。然后,我们开发了一个动态并发管理(DCM)框架,该框架集成了并发感知模型以在系统扩展过程中智能地重新分配系统中的软资源。我们将DCM与Amazon EC2-AutoScale进行了比较,Amazon EC2-AutoScale是使用六个实际突发性工作负载跟踪的最先进的仅硬件伸缩管理解决方案。实验结果表明,在所有工作负载跟踪下,与Amazon EC2-AutoScale相比,DCM均实现了显着更短的尾部等待时间和更高的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号