首页> 外文期刊>International Journal of Parallel, Emergent and Distributed Systems >A neural network for 3D gaze recording with binocular eye trackers
【24h】

A neural network for 3D gaze recording with binocular eye trackers

机译:用双眼眼动仪进行3D凝视记录的神经网络

获取原文
获取原文并翻译 | 示例

摘要

Using eye tracking for the investigation of visual attention has become increasingly popular during the last few decades. Nevertheless, only a small number of eye tracking studies have employed 3D displays, although such displays would closely resemble our natural visual environment. Besides higher cost and effort for the experimental setup, the main reason for the avoidance of 3D displays is the problem of computing a subject's current 3D gaze position based on the measured binocular gaze angles. The geometrical approaches to this problem that have been studied so far involved substantial error in the measurement of 3D gaze trajectories. In order to tackle this problem, we developed an anaglyph-based 3D calibration procedure and used a well-suited type of artificial neural network—a parametrized self-organizing map (PSOM)—to estimate the 3D gaze point from a subject's binocular eye-position data. We report an experiment in which the accuracy of the PSOM gaze-point estimation is compared to a geometrical solution. The results show that the neural network approach produces more accurate results than the geometrical method, especially for the depth axis and for distant stimuli.
机译:在过去的几十年中,使用眼动追踪进行视觉注意的研究变得越来越普遍。尽管如此,只有极少数的眼动追踪研究采用了3D显示器,尽管这种显示器与我们的自然视觉环境非常相似。除了用于实验装置的更高的成本和精力之外,避免使用3D显示器的主要原因还在于基于测量的双眼凝视角度计算对象当前3D凝视位置的问题。迄今为止已研究的解决该问题的几何方法在3D注视轨迹的测量中涉及很大的误差。为了解决这个问题,我们开发了一种基于立体图的3D校准程序,并使用了一种非常合适的人工神经网络(参数化自组织图(PSOM))来从受试者的双眼双眼中估计3D凝视点,位置数据。我们报告了一个实验,其中将PSOM凝视点估计的准确性与几何解决方案进行了比较。结果表明,与几何方法相比,神经网络方法产生的结果更准确,特别是对于深度轴和远距离刺激而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号