首页> 外文期刊>International Journal of Parallel, Emergent and Distributed Systems >Improvement Of The Speech Recognition In Noisy Environments Using A Nonparametric Regression
【24h】

Improvement Of The Speech Recognition In Noisy Environments Using A Nonparametric Regression

机译:使用非参数回归改进嘈杂环境中的语音识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient speech recognition system based on the general regression neural network (GRNN) has been presented. The GRNN has been previously applied for phoneme identification and isolated word recognition in quiet environment. We propose to extend this method to Arabic spoken word recognition in adverse conditions because noise robustness is one of the most challenging problems in automatic speech recognition (ASR). The proposed system has been tested for Arabic digit recognition at different signal-to-noise ratio (SNR) levels in various noisy conditions, including stationary and nonstationary background noises issued from NOISEX-92 database. The proposed scheme is compared with the similar recognisers based on the multilayer perceptron (MLP), the Elman recurrent neural network (RNN) and the discrete hidden Markov model (HMM). The experimental results show that the use of the neural network approach including nonparametric regression improves the global performance of the speech recogniser in noisy environments.
机译:本文提出了一种基于通用回归神经网络(GRNN)的高效语音识别系统。 GRNN先前已应用于安静环境中的音素识别和孤立单词识别。我们建议将此方法扩展到不利条件下的阿拉伯语语音识别,因为噪声鲁棒性是自动语音识别(ASR)中最具挑战性的问题之一。在各种嘈杂条件下,包括从NOISEX-92数据库发出的平稳和非平稳背景噪声,所提出的系统均已在不同的信噪比(SNR)级别下测试了阿拉伯数字识别。将该方案与基于多层感知器(MLP),Elman递归神经网络(RNN)和离散隐马尔可夫模型(HMM)的相似识别器进行了比较。实验结果表明,包括非参数回归在内的神经网络方法的使用提高了嘈杂环境中语音识别器的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号