首页> 外文期刊>Parallel Algorithms and Applications >Optimised template matching techniques in parallel environment with exhaustive search and swarm intelligence
【24h】

Optimised template matching techniques in parallel environment with exhaustive search and swarm intelligence

机译:具有穷举搜索和群智能的并行环境中的优化模板匹配技术

获取原文
获取原文并翻译 | 示例

摘要

Template Matching (TM) techniques are widely used for recognition and location of objects in image and signal processing applications. The existing techniques such as cross, zero and normalised cross-correlations for TM are time consuming. This paper proposes parallel algorithms for TM problems using Normalised Cross Correlation and Particle Swarm Optimisation (PSO) to suit real-time applications. Experimental results show that parallel version of PSO is comparatively efficient.
机译:模板匹配(TM)技术被广泛用于图像和信号处理应用程序中对象的识别和定位。现有技术(例如,TM的互相关,零相关和归一化互相关)非常耗时。本文提出了使用归一化互相关和粒子群优化(PSO)解决TM问题的并行算法,以适应实时应用。实验结果表明,并行版本的PSO比较有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号