首页> 外文期刊>Parallel algorithms and applications >GPU-LMDDA: a bit-vector GPU-based deadlock detection algorithm for multi-unit resource systems
【24h】

GPU-LMDDA: a bit-vector GPU-based deadlock detection algorithm for multi-unit resource systems

机译:GPU-LMDDA:用于多单元资源系统的基于位向量GPU的死锁检测算法

获取原文
获取原文并翻译 | 示例

摘要

This article presents the detailed description of a GPU-based multi-unit deadlock detection methodology, GPU-LMDDA with 12 pieces of pseudo code. Our design utilises the massively parallel hardware of the GPU to perform computations of deadlock detection in multi-unit resource systems. As a result, it is able to overcome the major limitations of prior software and hardware-based solutions by handling thousands of processes and resources concurrently. GPU-LMDDA employs a bit-vector technique with a novel bit-matrix multiplication algorithm to store and perform computations on algorithm matrices, thus decreasing the memory footprint and maximizing throughput. Our design treats deadlock detection as a service to the operating system by requiring minimal interaction with the CPU. By treating deadlock detection as an interactive service, all matrix management and algorithm computation are handled by the GPU, freeing CPU compute cycles. Our algorithm is implemented on three GPU cards: Tesla C2050, Tesla K20c, and Titan X, which showed speedups of 3-434X against single-threaded CPU equivalents.
机译:本文详细介绍了基于GPU的多单元死锁检测方法GPU-LMDDA(具有12条伪代码)。我们的设计利用GPU的大规模并行硬件在多单元资源系统中执行死锁检测的计算。结果,它能够通过同时处理数千个进程和资源来克服现有基于软件和硬件的解决方案的主要限制。 GPU-LMDDA采用具有新型位矩阵乘法算法的位向量技术来存储和执行算法矩阵的计算,从而减少了内存占用量并最大化了吞吐量。我们的设计将死锁检测视为对操作系统的一种服务,因为它需要与CPU的交互最少。通过将死锁检测视为一种交互式服务,GPU可以处理所有矩阵管理和算法计算,从而释放了CPU计算周期。我们的算法在三块GPU卡上实现:Tesla C2050,Tesla K20c和Titan X,与单线程CPU同类产品相比,它们显示了3-434X的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号