首页> 外文期刊>Parallel Algorithms and Applications >Partial syndrome-based system-level fault diagnosis using game theory
【24h】

Partial syndrome-based system-level fault diagnosis using game theory

机译:基于局部症候群的系统级故障博弈分析

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel diagnosis approach, using game theory, to solve the comparison-based system-level fault identification problem in distributed and parallel systems based on the asymmetric comparison model. Under this diagnosis model tasks are assigned to pairs of nodes and the results of executing these tasks are compared. Using the agreements and disagreements among the nodes' outputs, i.e. the input syndrome, the fault diagnosis algorithm identifies the fault status of the system's nodes, under the assumption that at most f of these nodes can permanently fail simultaneously. Since the introduction of the comparison model, significant progress has been made in both theory and practice associated with the original model and its offshoots. Nevertheless, the problem of efficiently identifying the set of faulty nodes when not all the comparison outcomes are available to the fault identification algorithm prior to initiating the diagnosis phase, i.e. partial syndromes, remains an outstanding research issue. In this paper, we first show how game theory can be adapted to solve the fault diagnosis problem by maximising the payoffs of all players (nodes). We then demonstrate, using results from a thorough simulation, the effectiveness of this approach in solving the fault identification problem using partial syndromes from randomly generated diagnosable systems of different sizes and under various fault scenarios. We have considered large diagnosable systems, and we have experimented extreme faulty situations by simulating all possible fault sets even those that are less likely to occur in practice. Over all the extensive simulations we have conducted, the new game-theory-based diagnosis algorithm performed very well and provided good diagnosis results, in terms of correctness, latency, and scalability, making it a viable addition or alternative to existing diagnosis algorithms.
机译:本文介绍一种新颖的诊断方法,运用博弈论,解决基于不对称比较模型的分布式和并行系统中基于比较的系统级故障识别问题。在此诊断模型下,将任务分配给成对的节点,并比较执行这些任务的结果。故障诊断算法使用节点输出之间的协议和分歧(即输入症状),在最多不超过f个节点同时永久失效的前提下,识别系统节点的故障状态。自从引入比较模型以来,与原始模型及其分支相关的理论和实践都取得了重大进展。然而,当在开始诊断阶段之前,不是所有的比较结果都可用于故障识别算法时,即部分综合症,有效地识别故障节点集合的问题仍然是一个突出的研究问题。在本文中,我们首先展示如何通过最大化所有玩家(节点)的收益来使博弈论适用于解决故障诊断问题。然后,我们使用彻底的仿真结果证明了该方法在解决故障识别问题方面的有效性,该方法使用了来自随机生成的不同大小,在各种故障情况下的可诊断系统的部分综合症。我们已经考虑了大型可诊断的系统,并且通过模拟所有可能的故障集甚至在实践中不太可能发生的故障集,对极端故障情况进行了试验。在我们进行的所有广泛模拟中,新的基于游戏理论的诊断算法在正确性,等待时间和可扩展性方面都表现出色,并提供了良好的诊断结果,使其成为现有诊断算法的可行补充或替代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号