首页> 外文期刊>Parallel Algorithms and Applications >The Garden of Eden theorem for cellular automata on group sets
【24h】

The Garden of Eden theorem for cellular automata on group sets

机译:群集上细胞自动机的伊甸园定理

获取原文
获取原文并翻译 | 示例

摘要

We prove the Garden of Eden theorem for big-cellular automata with finite set of states and finite neighbourhood on right amenable left homogeneous spaces with finite stabilisers. It states that the global transition function of such an automaton is surjective if and only if it is pre-injective. Pre-lnjectivity means that two global configurations that differ at most on a finite subset and have the same image under the global transition function must be identical. The theorem is proven by showing that the global transition function of an automaton as above is surjective if and only if its image has maximal entropy and that its image has maximal entropy if and only if it is pre-injective. Entropy of a subset of global configurations measures the asymptotic growth rate of the number of finite patterns with growing domains that occur in the subset.
机译:我们证明了大细胞自动机的伊甸园定理,它具有有限的状态集和带有有限稳定器的右可适应的左齐次空间上的有限邻域。它指出,这种自动机的全局转移函数在且仅当是预射影时才是射影。前注入性是指在有限子集上最多不同且在全局转移函数下具有相同图像的两个全局配置必须相同。该定理通过证明上述自动机的全局转移函数在且仅当其图像具有最大熵时才是射影,而在且仅当其是预注入性时才具有最大熵而证明。全局配置子集的熵衡量子集中出现的具有增长域的有限模式数量的渐近增长率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号