首页> 外文期刊>International journal of river basin management >Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression
【24h】

Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression

机译:使用分位数回归估算未加高河位的水位预报的不确定性

获取原文
获取原文并翻译 | 示例

摘要

River water level forecasts play an essential role in operational river management, and uncertainty estimates in the forecasts can support and influence decision-making. Currently, uncertainty estimates in the water level forecasts are commonly available at forecast locations where water level measurements are available, but are lacking at the remaining ungauged forecast locations. In the research presented in this paper, we investigate the combined use of (i) spatial interpolation of the errors (or residuals) in water level forecasts to ungauged locations, and (ii) quantile regression, which is a widely used technique to estimate the quantiles of a distribution, in this case, the error distribution around water level forecasts. The methodology was applied to the IJssel River in the Netherlands, using seven measurement locations and 5 years of hindcasted water levels. We applied a simple inverse-distance interpolation of the residuals in the water level forecasts, and carried out quantile regression on the interpolated residuals. Validation of the methodology showed that the estimated quantiles represented the observations to about 5% accuracy for forecast lead times of 24 h and greater. For shorter lead times, the accuracy varied per station, but was generally poorer due to the relatively greater spread of the interpolated residuals around the true residuals for shorter lead times. For delta rivers such as the IJssel River, the presented methodology is an easy-to-implement and (for lead times of 24 h or greater) accurate technique to augment river level forecasts at ungauged locations with uncertainty estimates. Improvement of the method would be supported by further research into interpolation techniques that take into account additional factors such as proximity of a tributary, influence of wind, or the proximity of a model boundary.
机译:河流水位预测在河流运营管理中起着至关重要的作用,并且预测中的不确定性估计可以支持和影响决策。当前,水位预报中的不确定性估计通常可在可进行水位测量的预报位置获得,而在其余未开封的预报位置则缺乏。在本文提出的研究中,我们研究了(i)将水位预测中的误差(或残差)进行空间插值到未设置位置的组合使用,以及(ii)分位数回归,这是一种广泛用于估算水位的技术。分布的分位数,在这种情况下为水位预测周围的误差分布。该方法已应用于荷兰的艾塞尔河,使用了七个测量位置和五年的后预报水位。我们在水位预测中对残差进行了简单的反距离插值,并对插值后的残差进行了分位数回归。该方法的验证表明,对于预计的24小时及更长的交货时间,估计的分位数代表了大约5%的观测值。对于较短的交货期,精度会随每个工位而变化,但通常会较差,这是因为较短的交货期内插残差围绕真实残差的分布相对较大。对于艾瑟尔河这样的三角洲河流,所提出的方法是一种易于实施的方法(对于24小时或更长的交货时间),是一种准确的技术,可以用不确定性估计来增强未加水位的河位预报。该方法的改进将通过对插值技术的进一步研究来支持,该插值技术考虑了其他因素,例如支流的接近程度,风的影响或模型边界的接近程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号