首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Combining image compression and classification using vector quantization
【24h】

Combining image compression and classification using vector quantization

机译:使用矢量量化结合图像压缩和分类

获取原文
获取原文并翻译 | 示例

摘要

We describe a method of combining classification and compression into a single vector quantizer by incorporating a Bayes risk term into the distortion measure used in the quantizer design algorithm. Once trained, the quantizer can operate to minimize the Bayes risk weighted distortion measure if there is a model providing the required posterior probabilities, or it can operate in a suboptimal fashion by minimizing the squared error only. Comparisons are made with other vector quantizer based classifiers, including the independent design of quantization and minimum Bayes risk classification and Kohonen's LVQ. A variety of examples demonstrate that the proposed method can provide classification ability close to or superior to learning VQ while simultaneously providing superior compression performance.
机译:我们描述了一种通过将贝叶斯风险项合并到量化器设计算法中使用的失真度量中来将分类和压缩组合到单个矢量量化器中的方法。一旦经过训练,如果存在提供所需后验概率的模型,则量化器可以操作以最小化贝叶斯风险加权失真度量,或者可以通过仅最小化平方误差来以次优方式操作。与其他基于矢量量化器的分类器进行了比较,包括量化和最小贝叶斯风险分类的独立设计以及Kohonen的LVQ。各种示例表明,所提出的方法可以提供接近或优于学习VQ的分类能力,同时提供出色的压缩性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号