首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation
【24h】

From Social to Individuals: A Parsimonious Path of Multi-Level Models for Crowdsourced Preference Aggregation

机译:从社会到个人:众包偏好聚集的多层次模型的简化路径

获取原文
获取原文并翻译 | 示例

摘要

In crowdsourced preference aggregation, it is often assumed that all the annotators are subject to a common preference or social utility function which generates their comparison behaviors in experiments. However, in reality, annotators are subject to variations due to multi-criteria, abnormal, or a mixture of such behaviors. In this paper, we propose a parsimonious mixed-effects model, which takes into account both the fixed effect that the majority of annotators follows a common linear utility model, and the random effect that some annotators might deviate from the common significantly and exhibit strongly personalized preferences. The key algorithm in this paper establishes a dynamic path from the social utility to individual variations, with different levels of sparsity on personalization. The algorithm is based on the Linearized Bregman Iterations, which leads to easy parallel implementations to meet the need of large-scale data analysis. In this unified framework, three kinds of random utility models are presented, including the basic linear model with L-2 loss, Bradley-Terry model, and Thurstone-Mosteller model. The validity of these multi-level models are supported by experiments with both simulated and real-world datasets, which shows that the parsimonious multi-level models exhibit improvements in both interpretability and predictive precision compared with traditional HodgeRank.
机译:在众包的偏好集合中,通常假设所有注释者都受一个共同的偏好或社会效用函数的约束,这些函数会在实验中产生它们的比较行为。但是,实际上,注释者会因多种标准,异常或此类行为的混合而发生变化。在本文中,我们提出了一个简约的混合效果模型,该模型考虑了大多数注释者遵循共同的线性效用模型的固定效应,以及一些注释者可能明显偏离共同点并表现出强烈个性化的随机效应。偏好。本文的关键算法建立了一条从社会效用到个体变异的动态路径,在个性化上具有不同程度的稀疏性。该算法基于线性Bregman迭代,可轻松实现并行实现,以满足大规模数据分析的需求。在这个统一的框架中,提出了三种随机效用模型,包括具有L-2损失的基本线性模型,Bradley-Terry模型和Thurstone-Mosteller模型。这些多层次模型的有效性得到了模拟和真实数据集实验的支持,这表明与传统的HodgeRank相比,简约的多层次模型在可解释性和预测精度上都有改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号