首页> 外文期刊>Optimization Methods and Software >The parallel solution of dense saddle-point linear systems arising in stochastic programming
【24h】

The parallel solution of dense saddle-point linear systems arising in stochastic programming

机译:随机规划中稠密鞍点线性系统的并行解

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach for solving dense saddle-point linear systems in a distributed-memory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular, for those arising in convex programming. Although stochastic optimization problems have many important applications, they can present serious computational difficulties. In particular, sample average approximation (SAA) problems with a large number of samples are often too big to solve on a single shared-memory system. Recent work has developed interior-point methods and specialized linear algebra to solve these problems in parallel, using a scenario-based decomposition that distributes the data, and work across computational nodes. Even for sparse SAA problems, the decomposition produces a dense and possibly very large saddle-point linear system that must be solved repeatedly. We developed a specialized parallel factorization procedure for these systems, together with a streamlined method for assembling the distributed dense matrix. Strong scaling tests indicate over 90% efficiency on 1024 cores on a stochastic unit commitment problem with 57 million variables. Stochastic unit commitment problems with up to 189 million variables are solved efficiently on up to 2048 cores.View full textDownload full textKeywordsstochastic programming, parallel computing, parallel dense linear algebra, saddle-point AMS Subject Classification 90C15, 65F05, 68W10Related var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2011.602976
机译:我们提出了一种新颖的方法来解决分布式内存环境中的密集鞍点线性系统。这项工作的动机是在有资源的随机优化问题中的应用,但是所提出的方法可以用于大量的密集鞍点系统,尤其是凸编程中产生的系统。尽管随机优化问题有许多重要的应用,但它们可能会带来严重的计算困难。特别是,大量样本的样本平均近似(SAA)问题通常太大,无法在单个共享内存系统上解决。最近的工作已经开发出内点方法和专用的线性代数,以使用基于场景的分解来并行解决这些问题,该分解将数据分布并在计算节点之间工作。即使对于稀疏的SAA问题,分解也会产生密集的且可能非常大的鞍点线性系统,必须反复求解。我们为这些系统开发了专门的并行分解程序,以及用于组装分布式密集矩阵的简化方法。强大的扩展测试表明,在带有5700万个变量的随机单位承诺问题上,在1024个内核上的效率超过90%。可在多达2048个内核上有效解决多达1.99亿个变量的随机单位承诺问题。查看全文下载全文:“ Taylor&Francis Online”,services_compact:“ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,pubid:“ ra-4dff56cd6bb1830b”添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2011.602976

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号