首页> 外文期刊>Optimization Methods and Software >A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints
【24h】

A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints

机译:具有联合控制和状态约束的线性二次最优控制问题的统一数值格式

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a numerical scheme for solving the continuous-time convex linear-quadratic (LQ) optimal control problem with mixed polyhedral state and control constraints. Unifying a discretization of this optimal control problem as often employed in model predictive control and that obtained through time-stepping methods based on the differential variational inequality reformulation, the scheme solves a sequence of finite-dimensional convex quadratic programs (QPs) whose optimal solutions are employed to construct a sequence of discrete-time trajectories dependent on the time step. Under certain technical primal-dual assumptions primarily to deal with the algebraic constraints involving the state variable, we prove that such a numerical trajectory converges to an optimal trajectory of the continuous-time control problem as the time step goes to zero, with both the limiting optimal state and costate trajectories being absolutely continuous. This provides a constructive proof of the existence of a solution to the optimal control problem with such regularity properties. Additional properties of the optimal solutions to the LQ problem are also established that are analogous to those of the finite-dimensional convex QP. Our results are applicable to problems with convex but not necessarily strictly convex objective functions and with possibly unbounded mixed state-control constraints.View full textDownload full textKeywordslinear-quadratic optimal control, differential variational inequalities, time-stepping methods, model predictive controlRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2011.593624
机译:本文提出了一种解决多时相混合状态和控制约束的连续时间凸线性二次(LQ)最优控制问题的数值方案。该方案统一了模型预测控制中经常采用的最优控制问题的离散化,并通过基于微分变分不等式重构的时间步进方法获得的离散化解决方案,解决了一系列有限维凸二次程序(QP),其最优解为用于根据时间步长构建离散时间轨迹的序列。在主要处理涉及状态变量的代数约束的某些技术原始对偶假设下,我们证明了随着时间步长变为零,这种数值轨迹收敛到连续时间控制问题的最优轨迹,而这两个极限最佳状态和代价轨迹是绝对连续的。这为具有这种规律性的最优控制问题的解决方案的存在提供了建设性的证据。还建立了LQ问题最优解的其他属性,这些属性类似于有限维凸QP的属性。我们的结果适用于具有凸但不一定严格凸的目标函数以及可能无界的混合状态控制约束的问题。 {ui_cobrand:“ Taylor&Francis Online”,servicescompact:“ citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2011.593624

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号