首页> 外文期刊>Optimization and Engineering >Finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state
【24h】

Finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state

机译:一个尺寸椭圆分布式最优控制问题的有限元方法对状态的衍生作用

获取原文
获取原文并翻译 | 示例

摘要

We investigate C-1 finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state formulated as fourth order variational inequalities for the state variable. For the problem with Dirichlet boundary conditions, we use an existing H5/2-epsilon regularity result for the optimal state to derive O(h(1/2-epsilon)) convergence for the approximation of the optimal state in the H-2 norm. For the problem with mixed Dirichlet and Neumann boundary conditions, we show that the optimal state belongs to H-3 under appropriate assumptions on the data and obtain O(h) convergence for the approximation of the optimal state in the H-2 norm.
机译:我们研究了一个维椭圆分布式最佳控制问题的C-1有限元方法,并对状态变分别不平等的状态的衍生作用的衍生作用的派生限制。 对于Dirichlet边界条件的问题,我们使用现有的H5 / 2-EPSILON规律性结果来获得O(H(1/2-epsilon))收敛于H-2规范中最佳状态的近似值 。 对于混合Dirichlet和Neumann边界条件的问题,我们表明最佳状态在数据上的适当假设下属于H-3,并获得H-2规范中最佳状态的近似的O(H)收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号