首页> 外文期刊>Optimization and Engineering >A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function
【24h】

A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function

机译:基于参数化内核函数的Semidefinite优化新的原始 - 双齿性点方法

获取原文
获取原文并翻译 | 示例

摘要

As indicated in the recent studies about primal-dual interior-point methods (IPMs) based on kernel functions, a kernel function not only serves to determine the search direction and measure the distance of the current iteration point to the μ-center, but also affects the iteration complexity and the practical computational efficiency of the algorithm. In this paper, we propose a new IPM for semidefinite optimization (SDO) based on a parameterized kernel function which is a generalization of the one presented by Bai et al. (Optim Methods Softw 17(6):985-1008, 2002). By using the good properties of the parameterized kernel function, we deduce that the iteration bound for large-update method is O(n~(1/2)log n log n/ε) for q = O(n), which is the best known complexity results for such methods. In our knowledge, this result is the first instance of primal-dual interior point method for SDO which involving the kernel function. Some numerical results have been provided.
机译:如最近关于基于内核函数的原始双点方法(IPM)的研究,内核功能不仅用于确定搜索方向并测量当前迭代点到μ中心的距离,还可以 影响算法的迭代复杂性和实际计算效率。 在本文中,我们提出了一种基于参数化内核功能的新IPM,用于基于参数化内核功能,这是Bai等人呈现的概括。 (OPTOP方法SOFTW 17(6):985-1008,2002)。 通过使用参数化内核函数的良好属性,我们推断出用于大更新方法的迭代是q = o(n)的o(n〜(1/2)log n log n /ε),这是 此类方法的最佳已知复杂性结果。 在我们的知识中,该结果是涉及内核函数的SDO的原始 - 双重内部点方法的第一个实例。 已经提供了一些数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号