首页> 外文期刊>Optimization and Engineering >Difference of convex functions algorithms (DCA) for image restoration via a Markov random field model
【24h】

Difference of convex functions algorithms (DCA) for image restoration via a Markov random field model

机译:马尔可夫随机场模型用于图像复原的凸函数算法(DCA)的差异

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a novel approach in the nonconvex optimization framework for image restoration via a Markov random field (MRF) model. While image restoration is elegantly expressed in the language of MRF's, the resulting energy minimization problem was widely viewed as intractable: it exhibits a highly nonsmooth nonconvex energy function with many local minima, and is known to be NP-hard. The main goal of this paper is to develop fast and scalable approximation optimization approaches to a nonsmooth nonconvex MRF model which corresponds to an MRF with a truncated quadratic (also known as half-quadratic) prior. For this aim, we use the difference of convex functions (DC) programming and DC algorithm (DCA), a fast and robust approach in smoothonsmooth nonconvex programming, which have been successfully applied in various fields in recent years. We propose two DC formulations and investigate the two corresponding versions of DCA. Numerical simulations show the efficiency, reliability and robustness of our customized DCAs with respect to the standard GNC algorithm and the Graph-Cut based method-a more recent and efficient approach to image analysis.
机译:在本文中,我们介绍了一种在非凸优化框架中通过马尔可夫随机场(MRF)模型进行图像恢复的新方法。虽然用MRF的语言优雅地表达了图像恢复,但由此产生的能量最小化问题却被广泛认为是棘手的:它显示出高度不光滑的非凸能量功能,并且具有许多局部最小值,并且已知是NP难的。本文的主要目的是为不光滑的非凸MRF模型开发快速和可扩展的近似优化方法,该模型对应于先验具有截短二次(也称为半二次)的MRF。为此,我们使用凸函数(DC)编程和DC算法(DCA)的区别,这是一种在平滑/非平滑非凸编程中快速而可靠的方法,近年来已成功应用于各个领域。我们提出了两种DC公式,并研究了DCA的两种相应版本。数值模拟表明,相对于标准GNC算法和基于Graph-Cut的方法,我们定制的DCA的效率,可靠性和鲁棒性是一种最新,更有效的图像分析方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号