首页> 外文期刊>Optimization and Engineering >A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)
【24h】

A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)

机译:使用基于梯度的增强拉格朗日方法(GRAMPC)进行嵌入式非线性模型预测控制的软件框架

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear MPC framework is presented that is suitable for dynamical systems with sampling times in the (sub)millisecond range and that allows for an efficient implementation on embedded hardware. The algorithm is based on an augmented Lagrangian formulation with a tailored gradient method for the inner minimization problem. The algorithm is implemented in the software framework GRAMPC and is a fundamental revision of an earlier version. Detailed performance results are presented for a test set of benchmark problems and in comparison to other nonlinear MPC packages. In addition, runtime results and memory requirements for GRAMPC on ECU level demonstrate its applicability on embedded hardware.
机译:提出了一种非线性MPC框架,该框架适用于采样时间在(毫秒)范围内的动态系统,并允许在嵌入式硬件上高效实现。该算法基于增强的拉格朗日公式,并针对内部最小化问题采用量身定制的梯度方法。该算法在软件框架GRAMPC中实现,是对早期版本的基本修订。给出了针对基准问题测试集的详细性能结果,并与其他非线性MPC软件包进行了比较。此外,ECU级别的GRAMPC的运行时结果和内存要求证明了其在嵌入式硬件上的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号