...
首页> 外文期刊>Optical Switching and Networking >A large-scale nesting ring multi-chip architecture for manycore processor systems
【24h】

A large-scale nesting ring multi-chip architecture for manycore processor systems

机译:用于多核处理器系统的大规模嵌套环多芯片架构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The optical network on chip (ONoC) paradigm has emerged as a promising solution to multi-core/many-core processor systems for offering enormous bandwidth and low power consumption. As chip multiprocessors (CMPs) scale to unprecedented numbers of cores, the performance of next-generation CMPs will be bounded by the process yield and power density of single chip. In earlier work we proposed a multi-chip ONoC architecture that scales to large numbers of CMPs and delivers high performance in terms of delay and throughout. Building on that work, in this paper we propose an optimized architecture for integrating a large number of cores into chips with a novel control strategy, including a contention resolution scheme and a resource reservation scheme. The proposed control strategy is crucial to large scale ONoCs, because the resource reservation scheme ensures efficient wavelength allocation for the traffic while the contention management scheme is effective in reducing the impact of contentions. To sustain good performance and energy efficiency of large-scale ONoC, the topology is optimized to reduce the average transmission distance with minimum increase of power consumption. We evaluate the proposed architecture within a 1000-core processor system and compare it with CMesh and several previously proposed topologies with different control strategies. The simulation results show that, our new large-scale architecture can achieve better performance on throughput and delay.
机译:片上光网络(ONoC)范例已成为多核/多核处理器系统的有前途的解决方案,以提供巨大的带宽和低功耗。随着芯片多处理器(CMP)扩展到前所未有的内核数量,下一代CMP的性能将受制于单芯片的工艺良率和功率密度。在较早的工作中,我们提出了一种多芯片ONoC架构,该架构可扩展到大量CMP,并在延迟和整体方面提供高性能。在这项工作的基础上,本文提出了一种优化的架构,该架构可通过一种新颖的控制策略(包括竞争解决方案和资源预留方案)将大量内核集成到芯片中。所提出的控制策略对于大规模ONoC至关重要,因为资源预留方案可确保为业务有效地分配波长,而竞争管理方案可有效减少竞争的影响。为了维持大规模ONoC的良好性能和能效,对拓扑进行了优化,以减少平均传输距离并以最小的功耗增加。我们在1000核处理器系统中评估了所提出的体系结构,并将其与CMesh以及先前提出的具有不同控制策略的几种拓扑进行了比较。仿真结果表明,我们的新型大规模架构可以在吞吐量和延迟方面实现更好的性能。

著录项

  • 来源
    《Optical Switching and Networking》 |2019年第1期|183-192|共10页
  • 作者单位

    State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications|Department of Computer Science, North Carolina State University;

    State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications;

    State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications;

    State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications;

    State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications;

    Department of Computer Science, North Carolina State University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ONoC; Large-scale; Routing algorithm; Resource reservation;

    机译:ONoC;大规模;路由算法;资源预留;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号