首页> 外文期刊>Optical memory & neural networks >Application of Radial Basis Function Neural Network for Information Processing in Fiber Optical Distributed Measuring Systems
【24h】

Application of Radial Basis Function Neural Network for Information Processing in Fiber Optical Distributed Measuring Systems

机译:径向基函数神经网络在光纤分布式测量系统信息处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

The paper discusses tomography reconstruction of distributed physical fields. The problem is shown to be solved by using distributed measuring networks based on optical fibre sensors. Special attention is paid to tomography measuring networks based on measuring elements with integrated sensitivity. The advantages of radial basis function neural networks (RBFNN) for data processing of signals in the distributed fiber optical measuring systems are studied. RBFNN specifics which enhance the efficiency of computations of physical fields and technical and technological objects under reconstruction are key issues. Comparative analysis of the operating efficiency of RBFNN method and standard analytical and algebraic method for fiber-optical tomography reconstruction is reported.
机译:本文讨论了分布式物理场的层析成像重建。通过使用基于光纤传感器的分布式测量网络可以解决该问题。特别注意基于具有集成灵敏度的测量元件的层析成像测量网络。研究了径向基函数神经网络(RBFNN)在分布式光纤测量系统中对信号进行数据处理的优势。关键问题是提高RBFNN的特定性,这些细节可提高物理场和正在重建的技术对象的计算效率。报道了RBFNN方法与标准分析和代数方法在光纤层析成像重建中的工作效率的比较分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号