首页> 外文期刊>Optical memory & neural networks >Pattern Recognition and Increasing of the Computational Efficiency of a Parallel Realization of the Probabilistic Neural Network with Homogeneity Testing
【24h】

Pattern Recognition and Increasing of the Computational Efficiency of a Parallel Realization of the Probabilistic Neural Network with Homogeneity Testing

机译:均质性测试的概率神经网络并行实现的模式识别和计算效率的提高

获取原文
获取原文并翻译 | 示例

摘要

The research subject is the computational complexity of the probabilistic neural network (PNN) in the pattern recognition problem for large model databases. We examined the following methods of increasing the efficiency of a neural-network classifier: a parallel multithread realization, reducing the PNN to a criterion with testing of homogeneity of feature histograms of input and reference images, approximate nearest-neighbor analyses (Best-Bin First, directed enumeration methods). The approach was tested in facial-recognition experiments with FERET dataset.
机译:研究主题是大型模型数据库的模式识别问题中的概率神经网络(PNN)的计算复杂性。我们研究了以下提高神经网络分类器效率的方法:并行多线程实现,通过测试输入图像和参考图像的特征直方图的同质性,将PNN降低为标准,近似最近邻分析(Best-Bin First ,定向枚举方法)。使用FERET数据集在面部识别实验中对该方法进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号