首页> 外文期刊>Neural Network World >STRICTLY MODULAR PROBABILISTIC NEURAL NETWORKS FOR PATTERN RECOGNITION
【24h】

STRICTLY MODULAR PROBABILISTIC NEURAL NETWORKS FOR PATTERN RECOGNITION

机译:模式识别的严格模块化概率神经网络

获取原文
获取原文并翻译 | 示例

摘要

Considering the statistical recognition of multidimensional binary observations we approximate the unknown class-conditional probability distributions by multivariate Bernoulli mixtures. We show that both the parameter optimization and the resulting Bayesian decision-making can be realized by a probabilistic neural network having strictly modular properties. In particular, the process of learning based on the EM algorithm can be performed by means of a sequential autonomous adaptation of neurons involving only the information from the input synapses and the interior of neurons. In this sense the probabilistic neural network can be designed automatically. The properties of the sequential strictly modular learning procedure are illustrated by numerical examples.
机译:考虑到多维二元观测值的统计识别,我们通过多元伯努利混合物来近似未知的类条件概率分布。我们表明,可以通过具有严格模块化特性的概率神经网络来实现参数优化和所产生的贝叶斯决策。特别地,基于EM算法的学习过程可以借助于神经元的顺序自主适配来执行,该自适应适配仅涉及来自输入突触和神经元内部的信息。从这个意义上说,概率神经网络可以自动设计。数值示例说明了顺序严格模块化学习过程的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号